Engineering optimization : methods and applications / A. Ravindran, K.M. Ragsdell, G.V. Reklaitis.

By: Ravindran, A, 1944-Contributor(s): Reklaitis, G. V, 1942- | Ragsdell, K. MMaterial type: TextTextPublisher: Hoboken, N.J. : John Wiley & Sons, c2006Edition: 2nd edDescription: xv, 667 p. : ill., map ; 25 cmISBN: 0471558141 (cloth); 9780471558149Subject(s): Engineering -- Mathematical models | Mathematical optimizationDDC classification: 620/.0042 LOC classification: TA342 | .R44 2006Online resources: Publisher description | Table of contents only | Contributor biographical information
Contents:
Introduction to Optimization Requirements for the Application of Optimization Methods Defining the System Boundaries Performance Criterion Independent Variables System Model Applications of Optimization in Engineering Design Applications Operations and Planning Applications Analysis and Data Reduction Applications Classical Mechanics Applications Taguchi System of Quality Engineering Structure of Optimization Problems Functions of a Single Variable Properties of Single-Variable Functions Optimality Criteria Region Elimination Methods Bounding Phase Interval Refinement Phase Comparison of Region Elimination Methods Polynomial Approximation or Point Estimation Methods Quadratic Estimation Methods Successive Quadratic Estimation Method Methods Requiring Derivatives Newton-Raphson Method Bisection Method Secant Method Cubic Search Method Comparison of Methods Functions of Several Variables Optimality Criteria Direct-Search Methods The S[superscript 2] (Simplex Search) Method Hooke-Jeeves Pattern Search Method Powell's Conjugate Direction Method Gradient-Based Methods Cauchy's Method Newton's Method Modified Newton's Method Marquardt's Method Conjugate Gradient Methods Quasi-Newton Methods Trust Regions Gradient-Based Algorithm Numerical Gradient Approximations Comparison of Methods and Numerical Results Linear Programming Formulation of Linear Programming Models Graphical Solution of Linear Programs in Two Variables Linear Program in Standard Form Handling Inequalities Handling Unrestricted Variables Principles of the Simplex Method Minimization Problems Unbounded Optimum Degeneracy and Cycling Use of Artificial Variables Two-Phase Simplex Method Computer Solution of Linear Programs Computer Codes Computational Efficiency of the Simplex Method Sensitivity Analysis in Linear Programming Applications Additional Topics in Linear Programming Duality Theory Dual Simplex Method Interior Point Methods Integer Programming Goal Programming Constrained Optimality Criteria Equality-Constrained Problems Lagrange Multipliers Economic Interpretation of Lagrange Multipliers Kuhn-Tucker Conditions Kuhn-Tucker Conditions or Kuhn-Tucker Problem Interpretation of Kuhn-Tucker Conditions Kuhn-Tucker Theorems Saddlepoint Conditions Second-Order Optimality Conditions Generalized Lagrange Multiplier Method Generalization of Convex Functions Transformation Methods Penalty Concept Various Penalty Terms Choice of Penalty Parameter R Algorithms, Codes, and Other Contributions Method of Multipliers Penalty Function Multiplier Update Rule Penalty Function Topology Termination of the Method MOM Characteristics Choice of R-Problem Scale Variable Bounds Other MOM-Type Codes Constrained Direct Search Problem Preparation Treatment of Equality Constraints Generation of Feasible Starting Points Adaptations of Unconstrained Search Methods Difficulties in Accommodating Constraints Complex Method Random-Search Methods Direct Sampling Procedures Combined Heuristic Procedures Linearization Methods for Constrained Problems Direct Use of Successive Linear Programs Linearly Constrained Case General Nonlinear Programming Case Discussion and Applications Separable Programming Single-Variable Functions Multivariable Separable Functions Linear Programming Solutions of Separable Problems Discussion and Applications Direction Generation Methods Based on Linearization Method of Feasible Directions Basic Algorithm Active Constraint Sets and Jamming Simplex Extensions for Linearly Constrained Problems Convex Simplex Method Reduced Gradient Method Convergence Acceleration Generalized Reduced Gradient Method Implicit Variable Elimination Basic GRG Algorithm Extensions of Basic Method Computational Considerations Design Application Problem Statement General Formulation Model Reduction and Solution Quadratic Approximation Methods for Constrained Problems Direct Quadratic Approximation Quadratic Approximation of the Lagrangian Function Variable Metric Methods for Constrained Optimization Problem Scaling Constraint Inconsistency Modification of H[superscript (t)] Comparison of GRG with CVM Structured Problems and Algorithms Integer Programming Formulation of Integer Programming Models Solution of Integer Programming Problems Guidelines on Problem Formulation and Solution Quadratic Programming Applications of Quadratic Programming Kuhn-Tucker Conditions Complementary Pivot Problems Goal Programming Comparison of Constrained Optimization Methods Software Availability A Comparison Philosophy Brief History of Classical Comparative Experiments Preliminary and Final Results Strategies for Optimization Studies Model Formulation Levels of Modeling Types of Models Problem Implementation Model Assembly Preparation for Solution Execution Strategies Solution Evaluation Solution Validation Sensitivity Analysis Engineering Case Studies Optimal Location of Coal-Blending Plants by Mixed-Integer Programming Problem Description Model Formulation Results Optimization of an Ethylene Glycol-Ethylene Oxide Process Problem Description Model Formulation Problem Preparation Discussion of Optimization Runs Optimal Design of a Compressed Air Energy Storage System Problem Description Model Formulation Numerical Results Review of Linear Algebra Set Theory Vectors Matrices Matrix Operations Determinant of a Square Matrix Inverse of a Matrix Condition of a Matrix Sparse Matrix Quadratic Forms Principal Minor Completing the Square Convex Sets Convex and Concave Functions Gauss-Jordan Elimination Scheme
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Call number Copy number Status Notes Date due Barcode
Books Books Main Library
TA342 .R44 2006 (Browse shelf (Opens below)) 1 Available STACKS 51952000149378

Reklaitis' name appears first on the earlier edition.

Includes bibliographical references and indexes.

1 Introduction to Optimization 1 -- 1.1 Requirements for the Application of Optimization Methods 2 -- 1.1.1 Defining the System Boundaries 2 -- 1.1.2 Performance Criterion 3 -- 1.1.3 Independent Variables 4 -- 1.1.4 System Model 5 -- 1.2 Applications of Optimization in Engineering 6 -- 1.2.1 Design Applications 8 -- 1.2.2 Operations and Planning Applications 15 -- 1.2.3 Analysis and Data Reduction Applications 20 -- 1.2.4 Classical Mechanics Applications 26 -- 1.2.5 Taguchi System of Quality Engineering 27 -- 1.3 Structure of Optimization Problems 28 -- 2 Functions of a Single Variable 32 -- 2.1 Properties of Single-Variable Functions 32 -- 2.2 Optimality Criteria 35 -- 2.3 Region Elimination Methods 45 -- 2.3.1 Bounding Phase 46 -- 2.3.2 Interval Refinement Phase 48 -- 2.3.3 Comparison of Region Elimination Methods 53 -- 2.4 Polynomial Approximation or Point Estimation Methods 55 -- 2.4.1 Quadratic Estimation Methods 56 -- 2.4.2 Successive Quadratic Estimation Method 58 -- 2.5 Methods Requiring Derivatives 61 -- 2.5.1 Newton-Raphson Method 61 -- 2.5.2 Bisection Method 63 -- 2.5.3 Secant Method 64 -- 2.5.4 Cubic Search Method 65 -- 2.6 Comparison of Methods 69 -- 3 Functions of Several Variables 78 -- 3.1 Optimality Criteria 80 -- 3.2 Direct-Search Methods 84 -- 3.2.1 The S[superscript 2] (Simplex Search) Method 86 -- 3.2.2 Hooke-Jeeves Pattern Search Method 92 -- 3.2.3 Powell's Conjugate Direction Method 97 -- 3.3 Gradient-Based Methods 108 -- 3.3.1 Cauchy's Method 109 -- 3.3.2 Newton's Method 111 -- 3.3.3 Modified Newton's Method 115 -- 3.3.4 Marquardt's Method 116 -- 3.3.5 Conjugate Gradient Methods 117 -- 3.3.6 Quasi-Newton Methods 123 -- 3.3.7 Trust Regions 127 -- 3.3.8 Gradient-Based Algorithm 128 -- 3.3.9 Numerical Gradient Approximations 129 -- 3.4 Comparison of Methods and Numerical Results 130 -- 4 Linear Programming 149 -- 4.1 Formulation of Linear Programming Models 149 -- 4.2 Graphical Solution of Linear Programs in Two Variables 154 -- 4.3 Linear Program in Standard Form 158 -- 4.3.1 Handling Inequalities 159 -- 4.3.2 Handling Unrestricted Variables 159 -- 4.4 Principles of the Simplex Method 161 -- 4.4.1 Minimization Problems 172 -- 4.4.2 Unbounded Optimum 173 -- 4.4.3 Degeneracy and Cycling 174 -- 4.4.4 Use of Artificial Variables 174 -- 4.4.5 Two-Phase Simplex Method 176 -- 4.5 Computer Solution of Linear Programs 177 -- 4.5.1 Computer Codes 177 -- 4.5.2 Computational Efficiency of the Simplex Method 179 -- 4.6 Sensitivity Analysis in Linear Programming 180 -- 4.7 Applications 183 -- 4.8 Additional Topics in Linear Programming 183 -- 4.8.1 Duality Theory 184 -- 4.8.2 Dual Simplex Method 188 -- 4.8.3 Interior Point Methods 189 -- 4.8.4 Integer Programming 205 -- 4.8.5 Goal Programming 205 -- 5 Constrained Optimality Criteria 218 -- 5.1 Equality-Constrained Problems 218 -- 5.2 Lagrange Multipliers 219 -- 5.3 Economic Interpretation of Lagrange Multipliers 224 -- 5.4 Kuhn-Tucker Conditions 225 -- 5.4.1 Kuhn-Tucker Conditions or Kuhn-Tucker Problem 226 -- 5.4.2 Interpretation of Kuhn-Tucker Conditions 228 -- 5.5 Kuhn-Tucker Theorems 229 -- 5.6 Saddlepoint Conditions 235 -- 5.7 Second-Order Optimality Conditions 238 -- 5.8 Generalized Lagrange Multiplier Method 245 -- 5.9 Generalization of Convex Functions 249 -- 6 Transformation Methods 260 -- 6.1 Penalty Concept 261 -- 6.1.1 Various Penalty Terms 262 -- 6.1.2 Choice of Penalty Parameter R 277 -- 6.2 Algorithms, Codes, and Other Contributions 279 -- 6.3 Method of Multipliers 282 -- 6.3.1 Penalty Function 283 -- 6.3.2 Multiplier Update Rule 283 -- 6.3.3 Penalty Function Topology 284 -- 6.3.4 Termination of the Method 285 -- 6.3.5 MOM Characteristics 286 -- 6.3.6 Choice of R-Problem Scale 289 -- 6.3.7 Variable Bounds 289 -- 6.3.8 Other MOM-Type Codes 293 -- 7 Constrained Direct Search 305 -- 7.1 Problem Preparation 306 -- 7.1.1 Treatment of Equality Constraints 306 -- 7.1.2 Generation of Feasible Starting Points 309 -- 7.2 Adaptations of Unconstrained Search Methods 309 -- 7.2.1 Difficulties in Accommodating Constraints 310 -- 7.2.2 Complex Method 312 -- 7.3 Random-Search Methods 322 -- 7.3.1 Direct Sampling Procedures 322 -- 7.3.2 Combined Heuristic Procedures 326 -- 8 Linearization Methods for Constrained Problems 336 -- 8.1 Direct Use of Successive Linear Programs 337 -- 8.1.1 Linearly Constrained Case 337 -- 8.1.2 General Nonlinear Programming Case 346 -- 8.1.3 Discussion and Applications 355 -- 8.2 Separable Programming 359 -- 8.2.1 Single-Variable Functions 359 -- 8.2.2 Multivariable Separable Functions 362 -- 8.2.3 Linear Programming Solutions of Separable Problems 364 -- 8.2.4 Discussion and Applications 368 -- 9 Direction Generation Methods Based on Linearization 378 -- 9.1 Method of Feasible Directions 378 -- 9.1.1 Basic Algorithm 380 -- 9.1.2 Active Constraint Sets and Jamming 383 -- 9.2 Simplex Extensions for Linearly Constrained Problems 388 -- 9.2.1 Convex Simplex Method 389 -- 9.2.2 Reduced Gradient Method 399 -- 9.2.3 Convergence Acceleration 403 -- 9.3 Generalized Reduced Gradient Method 406 -- 9.3.1 Implicit Variable Elimination 406 -- 9.3.2 Basic GRG Algorithm 410 -- 9.3.3 Extensions of Basic Method 419 -- 9.3.4 Computational Considerations 427 -- 9.4 Design Application 432 -- 9.4.1 Problem Statement 433 -- 9.4.2 General Formulation 434 -- 9.4.3 Model Reduction and Solution 437 -- 10 Quadratic Approximation Methods for Constrained Problems 450 -- 10.1 Direct Quadratic Approximation 451 -- 10.2 Quadratic Approximation of the Lagrangian Function 456 -- 10.3 Variable Metric Methods for Constrained Optimization 464 -- 10.4.1 Problem Scaling 470 -- 10.4.2 Constraint Inconsistency 470 -- 10.4.3 Modification of H[superscript (t)] 471 -- 10.4.4 Comparison of GRG with CVM 471 -- 11 Structured Problems and Algorithms 481 -- 11.1 Integer Programming 481 -- 11.1.1 Formulation of Integer Programming Models 482 -- 11.1.2 Solution of Integer Programming Problems 484 -- 11.1.3 Guidelines on Problem Formulation and Solution 492 -- 11.2 Quadratic Programming 494 -- 11.2.1 Applications of Quadratic Programming 494 -- 11.2.2 Kuhn-Tucker Conditions 498 -- 11.3 Complementary Pivot Problems 499 -- 11.4 Goal Programming 507 -- 12 Comparison of Constrained Optimization Methods 530 -- 12.1 Software Availability 530 -- 12.2 A Comparison Philosophy 531 -- 12.3 Brief History of Classical Comparative Experiments 533 -- 12.3.1 Preliminary and Final Results 535 -- 13 Strategies for Optimization Studies 542 -- 13.1 Model Formulation 543 -- 13.1.1 Levels of Modeling 544 -- 13.1.2 Types of Models 548 -- 13.2 Problem Implementation 552 -- 13.2.1 Model Assembly 553 -- 13.2.2 Preparation for Solution 554 -- 13.2.3 Execution Strategies 580 -- 13.3 Solution Evaluation 588 -- 13.3.1 Solution Validation 589 -- 13.3.2 Sensitivity Analysis 590 -- 14 Engineering Case Studies 603 -- 14.1 Optimal Location of Coal-Blending Plants by Mixed-Integer Programming 603 -- 14.1.1 Problem Description 604 -- 14.1.2 Model Formulation 604 -- 14.1.3 Results 609 -- 14.2 Optimization of an Ethylene Glycol-Ethylene Oxide Process 610 -- 14.2.1 Problem Description 610 -- 14.2.2 Model Formulation 612 -- 14.2.3 Problem Preparation 618 -- 14.2.4 Discussion of Optimization Runs 618 -- 14.3 Optimal Design of a Compressed Air Energy Storage System 621 -- 14.3.1 Problem Description 621 -- 14.3.2 Model Formulation 622 -- 14.3.3 Numerical Results 627 -- Appendix A Review of Linear Algebra 633 -- A.1 Set Theory 633 -- A.2 Vectors 633 -- A.3 Matrices 634 -- A.3.1 Matrix Operations 635 -- A.3.2 Determinant of a Square Matrix 637 -- A.3.3 Inverse of a Matrix 637 -- A.3.4 Condition of a Matrix 639 -- A.3.5 Sparse Matrix 639 -- A.4 Quadratic Forms 640 -- A.4.1 Principal Minor 641 -- A.4.2 Completing the Square 642 -- A.5 Convex Sets 646 -- Appendix B Convex and Concave Functions 648 -- Appendix C Gauss-Jordan Elimination Scheme 651.

1

There are no comments on this title.

to post a comment.