Introduction to algorithms / Thomas H. Cormen ... [et al.].
Material type:
Item type | Current library | Call number | Copy number | Status | Notes | Date due | Barcode |
---|---|---|---|---|---|---|---|
![]() |
Female Library | QA76.6 .C662 2001 (Browse shelf (Opens below)) | 1 | Available | STACKS | 51952000174523 | |
![]() |
Main Library | QA76.6 .C662 2001 (Browse shelf (Opens below)) | 1 | Available | STACKS | 51952000154082 |
Browsing Main Library shelves Close shelf browser
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
QA76.6 .A152 2011 STOC '11 : proceedings of the 2011 ACM international symposium on theory of computing, San Jose, California USA, June 6-8 2011 / | QA76.6 .B454 2000 Programming pearls / | QA76.6 .C358 2003 Understanding programming : an introduction using Java / | QA76.6 .C662 2001 Introduction to algorithms / | QA76.6 .C662 2009 Introduction to algorithms / | QA76.6 .F375 1994 The MIPS programmer's handbook / | QA76.6 .G35 1979 Computers and intractability : a guide to the theory of NP-completeness / |
Rev. ed. of: Introduction to algorithms / Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. c1990.
Includes bibliographical references (p. [1127]-1130) and index.
The role of algorithms in computing -- Getting started -- Growth of functions -- Recurrences -- Probabilistic analysis and randomized algortihms -- Heapsort -- Quicksort -- Sorting in linear time -- Medians and order statistics -- Elementary data structures -- Hash Tables -- Binary Search trees -- Red-black trees -- Augmenting data structures -- Dynamic programming -- Greedy Algorithms -- Amortized analysis -- B-trees -- Binomial heaps -- Fibonacci heaps -- Data structures for disjoint sets -- Elementary graph algorithms -- Minimum spanning trees -- Single-source shortest paths -- All-pairs shortest paths -- Maximum flow -- Sorting networks -- Matrix operations-- Linear programming -- Polynomials and the FFT -- Number-theoretic algortihsm -- String matching-- Computational geometry -- NP-completeness -- approximation algorithms -- A. summations -- B. Sets, etc. -- C. Counting and probability.
1 2
There are no comments on this title.