Principles of artificial neural networks / Daniel Graupe.
Material type:
Item type | Current library | Call number | Copy number | Status | Notes | Date due | Barcode |
---|---|---|---|---|---|---|---|
![]() |
Main Library | QA76.87 G77 2007 (Browse shelf (Opens below)) | 1 | Available | STACKS | 51952000058908 |
Browsing Main Library shelves Close shelf browser
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
QA76.774.M435 .L46 2016 Windows 10 all-in-one for dummies / | QA76.87 .C36 2015 Bio-inspired networking / | QA76.87 .H39 2009 Neural networks and learning machines / | QA76.87 G77 2007 Principles of artificial neural networks / | QA76.88 .P475 2008 Petascale computing : algorithms and applications / | QA76.9 . D32 W55 2007 Inside relational databases with examples in Access / | QA 76.9 .A25 .O45 2011 أمن تقنية المعلومات : نصائح من خبراء / |
Includes bibliographical references (p. 291-297) and indexes.
Fundamentals of biological neural networks -- Basic principles of ANNs and their early structures -- The perceptron -- The madaline -- Back propagation -- Hopefield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and the neocognitron -- Statistical training -- Recurrent (time cycling) back propagation networks -- Large scale memory storage and retrieval (LAMSTAR) network.
1
There are no comments on this title.