Gopalakrishnan, S.

Wave propagation in materials and structures / Srinivasan Gopalakrishnan. - xxi, 949 pages ; 24 cm

Includes bibliographical references (pages 909-938) and index.

Note continued: Constitutive Model For Smart Piezo Composites -- Constitutive Model For Magnetostrictive Materials -- Coupled Constitutive Model -- Constitutive Model For Electrostrictive Materials -- Constitutive Relation Using Polarization -- Quadratic Model -- Hyperbolic Tangent Constitutive Relations -- Wave Propagation In Structures With Piezo-Electric And Electrostrictive Actuators -- Governing Equation For A Beam With Electrostrictive Actuator -- Governing Equation For Beam With Piezoelectric Actuator -- Computation Of Wavenumbers And Group Speeds -- Spectral Finite Element Formulation -- Numerical Examples -- Wave Propagation In A Composite Beam With Embedded Magnetostrictive Patches -- Nth-Order Shear Deformation Theory With mth-Order Poisson Lateral Contraction -- Spectral Analysis -- Numerical Examples -- Wave Propagation In Single Delaminated Composite Beams -- Numerical Examples -- Wave Propagation In Beams With Multiple Delaminations -- Numerical Example -- Wave Propagation In A Composite Beam With Fiber Breaks Or Vertical Cracks -- Modeling Dynamic Contact Between Crack Surfaces -- Modeling Of Surface-Breaking Cracks -- Distributed Constraints At The Interfaces Between Sub-Laminates And Hanging Laminates -- Numerical Example -- Wave Propagation In Degraded Composite Structures -- Empirical Degraded Model -- Average Degradation Model -- Numerical Example -- Wave Propagation In A 2D Plate With Vertical Cracks -- Flexibility Along The Crack -- Wave Propagation In Porous Beams -- Modified Rule Of Mixtures -- Numerical Results -- General Considerations On The Repetitive Volume Elements -- Theory Of Bloch Waves -- Spectral Finite Element Model For Periodic Structures -- Spectral Super Element Approach -- Efficient Computation Of [KSS] -- Dispersion Characteristics Of A Periodic Wave-Guide With Defects -- Determinantal Equation Approach -- Transfer Matrix Eigenvalue Approach -- Numerical Examples -- Beam With Periodic Cracks -- SFEM For Periodic Structures -- Wave Propagation Analysis -- Comparison Of Computational Efficiency Of Periodic SFEM Model As Opposed To FEM -- Monte Carlo Simulations In The SFEM Environment -- Results And Discussion -- Effect Of Uncertainty On Velocity Time Histories -- Comparison Of Computational Efficiency Of FEM And SFEM Under MCS -- Distribution Of Time Of Arrival Of The First Reflection -- Effect Of Loading Frequency On The Time Histories -- Wavenumber COV For Different Material Property Distribution -- Wavenumber Distributions For Different Type Of Input Distribution -- Effect Of Material Uncertainty On Wavenumbers Obtained Using Higher-Order Theories -- Theory Of Hyperelasticity -- Non-Linear Governing Equation For An Isotropic Rod -- Time Domain Finite Element Models For Hyperelastic Analysis -- Standard Galerkin Finite Element Model (SGFEM) -- Time Domain Spectral Finite Element Model (TDSFEM) -- Taylor-Galerkin Finite Element Model (TGFEM) -- Generalized Galerkin Finite Element Model (GGFEM) -- Fsfem For Hyperelastic Wave Propagation -- Numerical Results And Discussion -- Performance Comparison Of Finite Element Schemes -- Performance Of Frequency Domain Spectral Finite Element Model -- Effect Of Non-Linearity On Wave Propagation In Hyperelastic Waveguides -- Summary Of Numerical Efficiency Of Different Finite Element Schemes -- Non-Linear Flexural Wave Propagation In Hyperelastic Timoshenko Beams -- Numerical Results And Discussion. 14.2.2. 14.3. 14.3.1. 14.4. 14.4.1. 14.4.2. 14.4.3. 14.5. 14.5.1. 14.5.2. 14.5.3. 14.5.4. 14.5.5. 14.6. 14.6.1. 14.6.2. 14.6.3. 15.1. 15.1.1. 15.2. 15.2.1. 15.3. 15.3.1. 15.3.2. 15.3.3. 15.3.4. 15.4. 15.4.1. 15.4.2. 15.4.3. 15.5. 15.5.1. 15.6. 15.6.1. 15.6.2. 16.1. 16.2. 16.3. 16.3.1. 16.3.2. 16.4. 16.4.1. 16.4.2. 16.5. 16.5.1. 16.6. 16.6.1. 16.6.2. 17.1. 17.2. 17.2.1. 17.2.2. 17.2.3. 17.2.4. 17.2.5. 17.2.6. 17.2.7. 18.1. 18.2. 18.3. 18.3.1. 18.3.2. 18.3.3. 18.3.4. 18.4. 18.5. 18.5.1. 18.5.2. 18.5.3. 18.5.4. 18.6. 18.6.1. Machine generated contents note: Essential Components Of A Wave -- Standing Waves -- Need For Wave Propagation Analysis In Structures And Materials -- Organization And Scope Of The Book -- Introduction To The Theory Of Elasticity -- Description Of Motion -- Strain -- Strain-Displacement Relations -- Stress -- Principal Stresses -- Constitutive Relations -- Elastic Symmetry -- Governing Equations Of Motion -- Dimensional Reduction Of 3D Elasticity Problems -- Plane Problems In Elasticity: Reduction To Two Dimensions -- Solution Procedures In Linear Theory Of Elasticity -- Theory Of Gradient Elasticity -- Eringen's Stress Gradient Theory -- Strain Gradient Theory -- Introduction To Composite Materials -- Theory Of Laminated Composites -- Micro-Mechanical Analysis Of Composites -- Macro-Mechanical Analysis Of Composites -- Classical Lamination Plate Theory -- Introduction To Functionally Graded Materials (FGM) -- Modeling Of FGM Structures -- Fourier Transforms -- Fourier Series -- Discrete Fourier Transform -- Short-Term Fourier Transform (STFT) -- Wavelet Transforms -- Daubechies Compactly Supported Wavelets -- Discrete Wavelet Transform (DWT) -- Laplace Transforms -- Need For Numerical Laplace Transform -- Numerical Laplace Transform -- Comparative Merits And Demerits Of Different Transforms -- Concept Of Wavenumber, Group Speeds, And Phase Speeds -- Wave Propagation Terminologies -- Spectral Analysis Of Motion -- Second-Order System -- Fourth-Order System -- General Form Of Wave Equations And Their Characteristics -- General Form Of Wave Equations -- Different Methods Of Computing Wavenumbers And Wave Amplitudes -- Method 1: The Companion Matrix And The SVD Technique -- Method 2: Linearization Of PEP -- Hamilton's Principle -- Wave Propagation In 1D Elementary Waveguides -- Longitudinal Wave Propagation In Rods -- Flexural Wave Propagation In Beams -- Wave Propagation In A Framed Structure -- Wave Propagation In Higher-Order Waveguides -- Wave Propagation In A Timoshenko Beam -- Wave Propagation In A Mindlin-Herrmann Rod -- Wave Propagation In Rotating Beams -- Wave Propagation In Tapered Waveguides -- Wave Propagation In A Tapered Rod With Exponential Depth Variation -- Wave Propagation In A Tapered Rod With Polynomial Depth Variation -- Wave Propagation In A Tapered Beam -- Governing Equations Of Motion -- Solution Of Navier's Equation -- Propagation Of Waves In Infinite 2D Media -- Wave Propagation In Semi-Infinite 2D Media -- Wave Propagation In Doubly Bounded Media -- Traction-Free Surfaces: A Case Of Lamb Wave Propagation -- Wave Propagation In Thin Plates -- Spectral Analysis -- Wave Propagation In A 1D Laminated Composite Waveguide -- Computation Of Wavenumbers -- Wavenumber And Wave Speeds In 1D Elementary Composite Beams -- Wave Propagation In Thick 1D Laminated Composite Waveguides -- Wave Motion In Thick Composite Beam -- Wave Propagation In Composite Cylindrical Tubes -- Linear Wave Motion In Composite Tubes -- Wave Propagation In Thin Composite Tubes -- Wave Propagation In Two-Dimensional Composite Waveguides -- Formulation Of Governing Equations And Computation Of Wavenumbers -- Wave Propagation In 2D Laminated Composite Plates -- Governing Equations And Wavenumber Computations -- Wave Propagation In Sandwich Beams Based On Extended Higher-Order Sandwich Plate Theory (EHSAPT) -- Governing Differential Equations -- Wave Propagation Characteristics -- Wave Propagation In 2D Sandwich Plate Wave-Guides -- Governing Differential Equations -- Computation Of Wave Parameters -- Numerical Examples -- Wave Propagation In Lengthwise Graded Rods -- Wave Propagation In A Depthwise Graded FGM Beam -- Wave Propagation On Lengthwise Graded Beam -- Wave Propagation In 2D Functionally Graded Structures -- Thermo-Elastic Wave Propagation In Functionally Graded Waveguides -- Introduction To Nanostructures -- Structure Of Carbon Nanotubes -- Wave Propagation In MWCNTS Using The Local Euler-Bernoulli Model -- Wave Parameters Computation -- Wave Propagation In MWCNT Through A Local Shell Model -- Governing Differential Equations -- Calculation Of Wavenumbers -- Wave Propagation In Non-Local Stress Gradient Nanorods -- Governing Equations Of ESGT Nanorods -- Axial Wave Propagation In Non-Local Strain Gradient Nanorods -- Governing Equation For Second-Order Strain Gradient Model -- Governing Equation For Fourth-Order Strain Gradient Model -- Uniqueness And Stability Of SOSGT Nanorods -- Axial Wave Propagation In SOSGT Nanorods -- Axial Wave Characteristics Of The Fourth-Order SGT Model -- Wave Propagation Analysis -- Wave Propagation In Higher-Order Nanorods Using The ESGT Model -- Wave Propagation In Nanobeams Using ESGT Formulations -- Transverse Wave Propagation In The ESGT Model-Based Euler-Bernoulli Nanobeam -- Transverse Wave Propagation In An ESGT Model-Based Timoshenko Nanobeam -- Wave Propagation In Mwcnt Using The ESGT Model -- Wave Dispersion In SWCNTS -- Wave Dispersion In DWCNTS -- Wave Propagation In Graphene -- Governing Equations For Flexural Wave Propagation In Monolayer Graphene Sheets -- Wave Dispersion Analysis -- wave Propagation In Graphene In An Elastic Medium -- Wave Dispersion Analysis -- Wave Propagation In A Cnt-Reinforced Nanocomposite Beam -- Governing Equation -- Computation Of Wavenumbers And Group Speeds -- Introductory Concepts -- Variational Principles -- Work And Complementary Work -- Strain Energy And Complementary Strain Energy -- Weighted Residual Techniques -- Energy Functional -- Weak Form Of The Governing Differential Equation -- Energy Theorems -- Principle Of Virtual Work -- Principle Of Minimum Potential Energy (PMPE) -- Rayleigh-Ritz Method -- Finite Element Formulation: H -- Type Formulation -- Shape Functions -- Derivation Of Finite Element Equations -- Isoparametric Formulation -- Numerical Integration And Gauss Quadrature -- Mass And Damping Matrix Formulation -- Superconvergent Fe Formulation -- Formulation Of A Superconvergent Laminated Composite FSDT Beam Element -- Time Domain Spectral Finite Element Formulation- Ap -- Type Finite Element Formulation -- Orthogonal Polynomials -- Solution Methods For Finite Element Method -- Finite Element Equation Solution In Static Analysis -- Finite Element Equation Solution In Dynamic Analysis -- Direct Time Integration -- Explicit Time Integration Techniques -- Implicit Time Integration -- Newmark beta Method -- Numerical Examples -- Super-Convergent Beam Element -- Time Domain Spectral FEM -- modeling Guidelines For Wave Propagation Problems -- Introduction To Spectral Finite Element Method -- General Formulation Procedure Of SFEM: Fourier Transform -- General Formulation Procedure: Wavelet Transform -- General Formulation Procedure: Laplace Transform -- Fourier Transform-Based Spectral Finite Element Formulation -- Spectral Rod Element -- Spectrally Formulated Elementary Beam Element -- Higher-Order 1D Composite Waveguides -- Spectral Element For Framed Structures -- Wave Propagation Through An Angled Joint 1.1. 1.1.1. 1.2. 1.3. 2.1. 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. 2.1.7. 2.1.8. 2.1.9. 2.1.10. 2.1.11. 2.2. 2.2.1. 2.2.2. 3.1. 3.2. 3.2.1. 3.2.2. 3.2.3. 3.3. 3.3.1. 4.1. 4.1.1. 4.1.2. 4.2. 4.3. 4.3.1. 4.3.2. 4.4. 4.4.1. 4.4.2. 4.5. 5.1. 5.2. 5.3. 5.3.1. 5.3.2. 5.4. 5.4.1. 5.5. 5.5.1. 5.5.2. 6.1. 6.2. 6.2.1. 6.2.2. 6.2.3. 6.3. 6.3.1. 6.3.2. 6.4. 6.5. 6.5.1. 6.5.2. 6.5.3. 7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.2. 7.2.1. 8.1. 8.1.1. 8.1.2. 8.2. 8.2.1. 8.3. 8.3.1. 8.3.2. 8.4. 8.4.1. 8.5. 8.5.1. 9.1. 9.1.1. 9.1.2. 9.2. 9.2.1. 9.2.2. 9.2.3. 10.1. 10.2. 10.3. 10.4. 10.5. 11.1. 11.1.1. 11.2. 11.2.1. 11.3. 11.3.1. 11.3.2. 11.4. 11.4.1. 11.5. 11.5.1. 11.5.2. 11.5.3. 11.5.4. 11.5.5. 11.5.6. 11.6. 11.7. 11.7.1. 11.7.2. 11.8. 11.8.1. 11.8.2. 11.9. 11.9.1. 11.9.2. 11.10. 11.10.1. 11.11. 11.11.1. 11.11.2. 12.1. 12.2. 12.2.1. 12.2.2. 12.2.3. 12.2.4. 12.2.5. 12.3. 12.3.1. 12.3.2. 12.3.3. 12.4. 12.4.1. 12.4.2. 12.4.3. 12.4.4. 12.4.5. 12.5. 12.5.1. 12.6. 12.6.1. 12.7. 12.7.1. 12.7.2. 12.8. 12.8.1. 12.8.2. 12.8.3. 12.9. 12.9.1. 12.9.2. 12.10. 13.1. 13.1.1. 13.1.2. 13.1.3. 13.2. 13.2.1. 13.2.2. 13.2.3. 13.2.4. 13.2.5. -- Composite 2D Layer Element -- Propagation Of Surface And Interfacial Waves In Laminated Composites -- Determination Of Lamb Wave Modes In Laminated Composites -- Spectral Element Formulation For An Anisotropic Plate -- Spectral Finite Element Formulation Of A Stiffened Composite Structure -- Numerical Examples Wave Propagation In Stiffened Structures -- Merits And Demerits Of Fourier Spectral Finite Element Method -- Signal Wraparound Problems In FSFEM -- Wavelet Transform-Based Spectral Finite Element Formulation -- Governing Equations And Their Reduction To Ordinary Differential Equations -- Periodic Boundary Conditions -- Estimation Of Wavenumber And Group Speeds: Existence Of Artificial Dispersion -- Non-Periodic Boundary Condition -- Spectral Element Formulation -- Numerical Examples -- Laplace Transform-Based Spectral Finite Element Formulation -- Analogy For The Numerical Damping Factor -- Computation Of Wavenumbers And Group Speeds -- Numerical Examples -- Introduction -- Constitutive Models For Piezoelectric Smart Composite Structures -- Model For Piezoelectric Material 13.2.6. 13.2.7. 13.2.8. 13.2.9. 13.2.10. 13.2.11. 13.2.12. 13.2.13. 13.3. 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.4. 13.4.1. 13.4.2. 13.4.3. 14.1. 14.2. 14.2.1.

9781482262797 1482262797

2016009117


Wave-motion, Theory of.
Solids--Mathematics.
Lightweight materials.
Lightweight materials.
Solids--Mathematics.
Wave-motion, Theory of.

QC174.26.W28 / G67 2017

531/.1133