An introduction to Clifford algebras and spinors / Jayme Vaz, Jr., Roldão da Rocha, Jr.
Material type:
Item type | Current library | Call number | Copy number | Status | Notes | Date due | Barcode |
---|---|---|---|---|---|---|---|
![]() |
Female Library | QC20.7.C55 .V39 2016 (Browse shelf (Opens below)) | 1 | Available | STACKS | 51952000329534 | |
![]() |
Main Library | QC20.7.C55 .V39 2016 (Browse shelf (Opens below)) | 1 | Available | STACKS | 51952000329541 |
Includes bibliographical references (pages 231-237) and index.
Machine generated contents note: 1. Preliminaries -- 1.1. Vectors and Covectors -- 1.2. The Tensor Product -- 1.3. Tensor Algebra -- 1.4. Exercises -- 2. Exterior Algebra and Grassmann Algebra -- 2.1. Permutations and the Alternator -- 2.2. p-Vectors and p-Covectors -- 2.3. The Exterior Product -- 2.4. The Exterior Algebra (V) -- 2.5. The Exterior Algebra as the Quotient of the Tensor Algebra -- 2.6. The Contraction, or Interior Product -- 2.7. Orientation, and Quasi-Hodge Isomorphisms -- 2.8. The Regressive Product -- 2.9. The Grassmann Algebra -- 2.10. The Hodge Isomorphism -- 2.11. Additional Readings -- 2.12. Exercises -- 3. Clifford, or Geometric, Algebra -- 3.1. Definition of a Clifford Algebra -- 3.2. Universal Clifford Algebra as a Quotient of the Tensor Algebra -- 3.3. Some General Considerations -- 3.4. Prom the Grassmann Algebra to the Clifford Algebra -- 3.5. Grassmann Algebra versus Clifford Algebra -- 3.6. Notation -- 3.7. Additional Readings -- 3.8. Exercises -- 4. Classification and Representation of the Clifford Algebras -- 4.1. Theorems on the Structure of Clifford Algebras -- 4.2. The Classification of Clifford Algebras -- 4.3. Idempotents and Representations -- 4.4. Clifford Algebra Representations -- 4.5. Additional Readings -- 4.6. Exercises -- 5. Clifford Algebras, and Associated Groups -- 5.1. Orthogonal Transformations and the Cartan -- Dieudonne Theorem -- 5.2. The Clifford -- Lipschitz Group -- 5.3. The Pin Group and the Spin Group -- 5.4. Conformal Transformations in Clifford Algebras -- 5.5. Additional Readings -- 5.6. Exercises -- 6. Spinors -- 6.1. The Babel of Spinors -- 6.2. Algebraic Spinors -- 6.3. Classical Spinors -- 6.4. Spinor Operators -- 6.5. A Comparison of the Different Definitions of Spinors -- 6.6. The Inner Product in the Space of Algebraic Spinors -- 6.7. The Triality Principle in the Clifford Algebraic Context -- 6.8. Pure Spinors -- 6.9. Dual Rotations, and the Penrose Flagpole -- 6.10. Weyl Spinors in Cl3,0 -- 6.11. Weyl Spinors in the Clifford Algebra Cl0,3 H H -- 6.12. Spinor Transformations -- 6.13. Spacetime Vectors as Paravectors of Cl3,0 from Weyl Spinors -- 6.14. Paravectors of Cl4,1 in Cl3,0 via the Periodicity Theorem -- 6.15. Twistors as Geometric Multivectors -- 6.16. Spinor Classification According to Bilinear Covariants -- 6.17. Additional Readings -- 6.18. Exercises -- Appendix A The Standard Two-Component Spinor Formalism -- A.1. Weyl Spinors -- A.2. Contravariant Undotted Spinors -- A.3. Covariant Undotted Spinors -- A.4. Contravariant Dotted Spinors -- A.5. Covariant Dotted Spinors -- A.6. Null Flags and Flagpoles -- A.7. The Supersymmetry Algebra -- Appendix B List of Symbols.
1 2
There are no comments on this title.