000 15618cam a2200529 i 4500
001 u14421
003 SA-PMU
005 20210418125054.0
008 160425t20172017flu b 001 0 eng
010 _a 2016009117
040 _aDLC
_beng
_erda
_cDLC
_dBTCTA
_dYDXCP
_dBDX
_dOCLCF
_dCUY
_dIUL
_dU3G
019 _a959872856
020 _a9781482262797
_q(alk. paper)
020 _a1482262797
_q(alk. paper)
035 _a(OCoLC)936350231
_z(OCoLC)959872856
042 _apcc
050 0 0 _aQC174.26.W28
_bG67 2017
082 0 0 _a531/.1133
_223
100 1 _aGopalakrishnan, S.
_q(Srinivasan),
_eauthor.
245 1 0 _aWave propagation in materials and structures /
_cSrinivasan Gopalakrishnan.
264 1 _aBoca Raton :
_bCRC Press,
_c[2017]
264 4 _c©2017
300 _axxi, 949 pages ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references (pages 909-938) and index.
505 0 0 _aNote continued:
_g14.2.2.
_tConstitutive Model For Smart Piezo Composites --
_g14.3.
_tConstitutive Model For Magnetostrictive Materials --
_g14.3.1.
_tCoupled Constitutive Model --
_g14.4.
_tConstitutive Model For Electrostrictive Materials --
_g14.4.1.
_tConstitutive Relation Using Polarization --
_g14.4.2.
_tQuadratic Model --
_g14.4.3.
_tHyperbolic Tangent Constitutive Relations --
_g14.5.
_tWave Propagation In Structures With Piezo-Electric And Electrostrictive Actuators --
_g14.5.1.
_tGoverning Equation For A Beam With Electrostrictive Actuator --
_g14.5.2.
_tGoverning Equation For Beam With Piezoelectric Actuator --
_g14.5.3.
_tComputation Of Wavenumbers And Group Speeds --
_g14.5.4.
_tSpectral Finite Element Formulation --
_g14.5.5.
_tNumerical Examples --
_g14.6.
_tWave Propagation In A Composite Beam With Embedded Magnetostrictive Patches --
_g14.6.1.
_tNth-Order Shear Deformation Theory With mth-Order Poisson Lateral Contraction --
_g14.6.2.
_tSpectral Analysis --
_g14.6.3.
_tNumerical Examples --
_g15.1.
_tWave Propagation In Single Delaminated Composite Beams --
_g15.1.1.
_tNumerical Examples --
_g15.2.
_tWave Propagation In Beams With Multiple Delaminations --
_g15.2.1.
_tNumerical Example --
_g15.3.
_tWave Propagation In A Composite Beam With Fiber Breaks Or Vertical Cracks --
_g15.3.1.
_tModeling Dynamic Contact Between Crack Surfaces --
_g15.3.2.
_tModeling Of Surface-Breaking Cracks --
_g15.3.3.
_tDistributed Constraints At The Interfaces Between Sub-Laminates And Hanging Laminates --
_g15.3.4.
_tNumerical Example --
_g15.4.
_tWave Propagation In Degraded Composite Structures --
_g15.4.1.
_tEmpirical Degraded Model --
_g15.4.2.
_tAverage Degradation Model --
_g15.4.3.
_tNumerical Example --
_g15.5.
_tWave Propagation In A 2D Plate With Vertical Cracks --
_g15.5.1.
_tFlexibility Along The Crack --
_g15.6.
_tWave Propagation In Porous Beams --
_g15.6.1.
_tModified Rule Of Mixtures --
_g15.6.2.
_tNumerical Results --
_g16.1.
_tGeneral Considerations On The Repetitive Volume Elements --
_g16.2.
_tTheory Of Bloch Waves --
_g16.3.
_tSpectral Finite Element Model For Periodic Structures --
_g16.3.1.
_tSpectral Super Element Approach --
_g16.3.2.
_tEfficient Computation Of [KSS] --
_g16.4.
_tDispersion Characteristics Of A Periodic Wave-Guide With Defects --
_g16.4.1.
_tDeterminantal Equation Approach --
_g16.4.2.
_tTransfer Matrix Eigenvalue Approach --
_g16.5.
_tNumerical Examples --
_g16.5.1.
_tBeam With Periodic Cracks --
_g16.6.
_tSFEM For Periodic Structures --
_g16.6.1.
_tWave Propagation Analysis --
_g16.6.2.
_tComparison Of Computational Efficiency Of Periodic SFEM Model As Opposed To FEM --
_g17.1.
_tMonte Carlo Simulations In The SFEM Environment --
_g17.2.
_tResults And Discussion --
_g17.2.1.
_tEffect Of Uncertainty On Velocity Time Histories --
_g17.2.2.
_tComparison Of Computational Efficiency Of FEM And SFEM Under MCS --
_g17.2.3.
_tDistribution Of Time Of Arrival Of The First Reflection --
_g17.2.4.
_tEffect Of Loading Frequency On The Time Histories --
_g17.2.5.
_tWavenumber COV For Different Material Property Distribution --
_g17.2.6.
_tWavenumber Distributions For Different Type Of Input Distribution --
_g17.2.7.
_tEffect Of Material Uncertainty On Wavenumbers Obtained Using Higher-Order Theories --
_g18.1.
_tTheory Of Hyperelasticity --
_g18.2.
_tNon-Linear Governing Equation For An Isotropic Rod --
_g18.3.
_tTime Domain Finite Element Models For Hyperelastic Analysis --
_g18.3.1.
_tStandard Galerkin Finite Element Model (SGFEM) --
_g18.3.2.
_tTime Domain Spectral Finite Element Model (TDSFEM) --
_g18.3.3.
_tTaylor-Galerkin Finite Element Model (TGFEM) --
_g18.3.4.
_tGeneralized Galerkin Finite Element Model (GGFEM) --
_g18.4.
_tFsfem For Hyperelastic Wave Propagation --
_g18.5.
_tNumerical Results And Discussion --
_g18.5.1.
_tPerformance Comparison Of Finite Element Schemes --
_g18.5.2.
_tPerformance Of Frequency Domain Spectral Finite Element Model --
_g18.5.3.
_tEffect Of Non-Linearity On Wave Propagation In Hyperelastic Waveguides --
_g18.5.4.
_tSummary Of Numerical Efficiency Of Different Finite Element Schemes --
_g18.6.
_tNon-Linear Flexural Wave Propagation In Hyperelastic Timoshenko Beams --
_g18.6.1.
_tNumerical Results And Discussion.
505 0 0 _aMachine generated contents note:
_g1.1.
_tEssential Components Of A Wave --
_g1.1.1.
_tStanding Waves --
_g1.2.
_tNeed For Wave Propagation Analysis In Structures And Materials --
_g1.3.
_tOrganization And Scope Of The Book --
_g2.1.
_tIntroduction To The Theory Of Elasticity --
_g2.1.1.
_tDescription Of Motion --
_g2.1.2.
_tStrain --
_g2.1.3.
_tStrain-Displacement Relations --
_g2.1.4.
_tStress --
_g2.1.5.
_tPrincipal Stresses --
_g2.1.6.
_tConstitutive Relations --
_g2.1.7.
_tElastic Symmetry --
_g2.1.8.
_tGoverning Equations Of Motion --
_g2.1.9.
_tDimensional Reduction Of 3D Elasticity Problems --
_g2.1.10.
_tPlane Problems In Elasticity: Reduction To Two Dimensions --
_g2.1.11.
_tSolution Procedures In Linear Theory Of Elasticity --
_g2.2.
_tTheory Of Gradient Elasticity --
_g2.2.1.
_tEringen's Stress Gradient Theory --
_g2.2.2.
_tStrain Gradient Theory --
_g3.1.
_tIntroduction To Composite Materials --
_g3.2.
_tTheory Of Laminated Composites --
_g3.2.1.
_tMicro-Mechanical Analysis Of Composites --
_g3.2.2.
_tMacro-Mechanical Analysis Of Composites --
_g3.2.3.
_tClassical Lamination Plate Theory --
_g3.3.
_tIntroduction To Functionally Graded Materials (FGM) --
_g3.3.1.
_tModeling Of FGM Structures --
_g4.1.
_tFourier Transforms --
_g4.1.1.
_tFourier Series --
_g4.1.2.
_tDiscrete Fourier Transform --
_g4.2.
_tShort-Term Fourier Transform (STFT) --
_g4.3.
_tWavelet Transforms --
_g4.3.1.
_tDaubechies Compactly Supported Wavelets --
_g4.3.2.
_tDiscrete Wavelet Transform (DWT) --
_g4.4.
_tLaplace Transforms --
_g4.4.1.
_tNeed For Numerical Laplace Transform --
_g4.4.2.
_tNumerical Laplace Transform --
_g4.5.
_tComparative Merits And Demerits Of Different Transforms --
_g5.1.
_tConcept Of Wavenumber, Group Speeds, And Phase Speeds --
_g5.2.
_tWave Propagation Terminologies --
_g5.3.
_tSpectral Analysis Of Motion --
_g5.3.1.
_tSecond-Order System --
_g5.3.2.
_tFourth-Order System --
_g5.4.
_tGeneral Form Of Wave Equations And Their Characteristics --
_g5.4.1.
_tGeneral Form Of Wave Equations --
_g5.5.
_tDifferent Methods Of Computing Wavenumbers And Wave Amplitudes --
_g5.5.1.
_tMethod 1: The Companion Matrix And The SVD Technique --
_g5.5.2.
_tMethod 2: Linearization Of PEP --
_g6.1.
_tHamilton's Principle --
_g6.2.
_tWave Propagation In 1D Elementary Waveguides --
_g6.2.1.
_tLongitudinal Wave Propagation In Rods --
_g6.2.2.
_tFlexural Wave Propagation In Beams --
_g6.2.3.
_tWave Propagation In A Framed Structure --
_g6.3.
_tWave Propagation In Higher-Order Waveguides --
_g6.3.1.
_tWave Propagation In A Timoshenko Beam --
_g6.3.2.
_tWave Propagation In A Mindlin-Herrmann Rod --
_g6.4.
_tWave Propagation In Rotating Beams --
_g6.5.
_tWave Propagation In Tapered Waveguides --
_g6.5.1.
_tWave Propagation In A Tapered Rod With Exponential Depth Variation --
_g6.5.2.
_tWave Propagation In A Tapered Rod With Polynomial Depth Variation --
_g6.5.3.
_tWave Propagation In A Tapered Beam --
_g7.1.
_tGoverning Equations Of Motion --
_g7.1.1.
_tSolution Of Navier's Equation --
_g7.1.2.
_tPropagation Of Waves In Infinite 2D Media --
_g7.1.3.
_tWave Propagation In Semi-Infinite 2D Media --
_g7.1.4.
_tWave Propagation In Doubly Bounded Media --
_g7.1.5.
_tTraction-Free Surfaces: A Case Of Lamb Wave Propagation --
_g7.2.
_tWave Propagation In Thin Plates --
_g7.2.1.
_tSpectral Analysis --
_g8.1.
_tWave Propagation In A 1D Laminated Composite Waveguide --
_g8.1.1.
_tComputation Of Wavenumbers --
_g8.1.2.
_tWavenumber And Wave Speeds In 1D Elementary Composite Beams --
_g8.2.
_tWave Propagation In Thick 1D Laminated Composite Waveguides --
_g8.2.1.
_tWave Motion In Thick Composite Beam --
_g8.3.
_tWave Propagation In Composite Cylindrical Tubes --
_g8.3.1.
_tLinear Wave Motion In Composite Tubes --
_g8.3.2.
_tWave Propagation In Thin Composite Tubes --
_g8.4.
_tWave Propagation In Two-Dimensional Composite Waveguides --
_g8.4.1.
_tFormulation Of Governing Equations And Computation Of Wavenumbers --
_g8.5.
_tWave Propagation In 2D Laminated Composite Plates --
_g8.5.1.
_tGoverning Equations And Wavenumber Computations --
_g9.1.
_tWave Propagation In Sandwich Beams Based On Extended Higher-Order Sandwich Plate Theory (EHSAPT) --
_g9.1.1.
_tGoverning Differential Equations --
_g9.1.2.
_tWave Propagation Characteristics --
_g9.2.
_tWave Propagation In 2D Sandwich Plate Wave-Guides --
_g9.2.1.
_tGoverning Differential Equations --
_g9.2.2.
_tComputation Of Wave Parameters --
_g9.2.3.
_tNumerical Examples --
_g10.1.
_tWave Propagation In Lengthwise Graded Rods --
_g10.2.
_tWave Propagation In A Depthwise Graded FGM Beam --
_g10.3.
_tWave Propagation On Lengthwise Graded Beam --
_g10.4.
_tWave Propagation In 2D Functionally Graded Structures --
_g10.5.
_tThermo-Elastic Wave Propagation In Functionally Graded Waveguides --
_g11.1.
_tIntroduction To Nanostructures --
_g11.1.1.
_tStructure Of Carbon Nanotubes --
_g11.2.
_tWave Propagation In MWCNTS Using The Local Euler-Bernoulli Model --
_g11.2.1.
_tWave Parameters Computation --
_g11.3.
_tWave Propagation In MWCNT Through A Local Shell Model --
_g11.3.1.
_tGoverning Differential Equations --
_g11.3.2.
_tCalculation Of Wavenumbers --
_g11.4.
_tWave Propagation In Non-Local Stress Gradient Nanorods --
_g11.4.1.
_tGoverning Equations Of ESGT Nanorods --
_g11.5.
_tAxial Wave Propagation In Non-Local Strain Gradient Nanorods --
_g11.5.1.
_tGoverning Equation For Second-Order Strain Gradient Model --
_g11.5.2.
_tGoverning Equation For Fourth-Order Strain Gradient Model --
_g11.5.3.
_tUniqueness And Stability Of SOSGT Nanorods --
_g11.5.4.
_tAxial Wave Propagation In SOSGT Nanorods --
_g11.5.5.
_tAxial Wave Characteristics Of The Fourth-Order SGT Model --
_g11.5.6.
_tWave Propagation Analysis --
_g11.6.
_tWave Propagation In Higher-Order Nanorods Using The ESGT Model --
_g11.7.
_tWave Propagation In Nanobeams Using ESGT Formulations --
_g11.7.1.
_tTransverse Wave Propagation In The ESGT Model-Based Euler-Bernoulli Nanobeam --
_g11.7.2.
_tTransverse Wave Propagation In An ESGT Model-Based Timoshenko Nanobeam --
_g11.8.
_tWave Propagation In Mwcnt Using The ESGT Model --
_g11.8.1.
_tWave Dispersion In SWCNTS --
_g11.8.2.
_tWave Dispersion In DWCNTS --
_g11.9.
_tWave Propagation In Graphene --
_g11.9.1.
_tGoverning Equations For Flexural Wave Propagation In Monolayer Graphene Sheets --
_g11.9.2.
_tWave Dispersion Analysis --
_g11.10.
_twave Propagation In Graphene In An Elastic Medium --
_g11.10.1.
_tWave Dispersion Analysis --
_g11.11.
_tWave Propagation In A Cnt-Reinforced Nanocomposite Beam --
_g11.11.1.
_tGoverning Equation --
_g11.11.2.
_tComputation Of Wavenumbers And Group Speeds --
_g12.1.
_tIntroductory Concepts --
_g12.2.
_tVariational Principles --
_g12.2.1.
_tWork And Complementary Work --
_g12.2.2.
_tStrain Energy And Complementary Strain Energy --
_g12.2.3.
_tWeighted Residual Techniques --
_g12.2.4.
_tEnergy Functional --
_g12.2.5.
_tWeak Form Of The Governing Differential Equation --
_g12.3.
_tEnergy Theorems --
_g12.3.1.
_tPrinciple Of Virtual Work --
_g12.3.2.
_tPrinciple Of Minimum Potential Energy (PMPE) --
_g12.3.3.
_tRayleigh-Ritz Method --
_g12.4.
_tFinite Element Formulation: H -- Type Formulation --
_g12.4.1.
_tShape Functions --
_g12.4.2.
_tDerivation Of Finite Element Equations --
_g12.4.3.
_tIsoparametric Formulation --
_g12.4.4.
_tNumerical Integration And Gauss Quadrature --
_g12.4.5.
_tMass And Damping Matrix Formulation --
_g12.5.
_tSuperconvergent Fe Formulation --
_g12.5.1.
_tFormulation Of A Superconvergent Laminated Composite FSDT Beam Element --
_g12.6.
_tTime Domain Spectral Finite Element Formulation- Ap -- Type Finite Element Formulation --
_g12.6.1.
_tOrthogonal Polynomials --
_g12.7.
_tSolution Methods For Finite Element Method --
_g12.7.1.
_tFinite Element Equation Solution In Static Analysis --
_g12.7.2.
_tFinite Element Equation Solution In Dynamic Analysis --
_g12.8.
_tDirect Time Integration --
_g12.8.1.
_tExplicit Time Integration Techniques --
_g12.8.2.
_tImplicit Time Integration --
_g12.8.3.
_tNewmark beta Method --
_g12.9.
_tNumerical Examples --
_g12.9.1.
_tSuper-Convergent Beam Element --
_g12.9.2.
_tTime Domain Spectral FEM --
_g12.10.
_tmodeling Guidelines For Wave Propagation Problems --
_g13.1.
_tIntroduction To Spectral Finite Element Method --
_g13.1.1.
_tGeneral Formulation Procedure Of SFEM: Fourier Transform --
_g13.1.2.
_tGeneral Formulation Procedure: Wavelet Transform --
_g13.1.3.
_tGeneral Formulation Procedure: Laplace Transform --
_g13.2.
_tFourier Transform-Based Spectral Finite Element Formulation --
_g13.2.1.
_tSpectral Rod Element --
_g13.2.2.
_tSpectrally Formulated Elementary Beam Element --
_g13.2.3.
_tHigher-Order 1D Composite Waveguides --
_g13.2.4.
_tSpectral Element For Framed Structures --
_g13.2.5.
_tWave Propagation Through An Angled Joint
505 0 0 _t--
_g13.2.6.
_tComposite 2D Layer Element --
_g13.2.7.
_tPropagation Of Surface And Interfacial Waves In Laminated Composites --
_g13.2.8.
_tDetermination Of Lamb Wave Modes In Laminated Composites --
_g13.2.9.
_tSpectral Element Formulation For An Anisotropic Plate --
_g13.2.10.
_tSpectral Finite Element Formulation Of A Stiffened Composite Structure --
_g13.2.11.
_tNumerical Examples Wave Propagation In Stiffened Structures --
_g13.2.12.
_tMerits And Demerits Of Fourier Spectral Finite Element Method --
_g13.2.13.
_tSignal Wraparound Problems In FSFEM --
_g13.3.
_tWavelet Transform-Based Spectral Finite Element Formulation --
_g13.3.1.
_tGoverning Equations And Their Reduction To Ordinary Differential Equations --
_g13.3.2.
_tPeriodic Boundary Conditions --
_g13.3.3.
_tEstimation Of Wavenumber And Group Speeds: Existence Of Artificial Dispersion --
_g13.3.4.
_tNon-Periodic Boundary Condition --
_g13.3.5.
_tSpectral Element Formulation --
_g13.3.6.
_tNumerical Examples --
_g13.4.
_tLaplace Transform-Based Spectral Finite Element Formulation --
_g13.4.1.
_tAnalogy For The Numerical Damping Factor --
_g13.4.2.
_tComputation Of Wavenumbers And Group Speeds --
_g13.4.3.
_tNumerical Examples --
_g14.1.
_tIntroduction --
_g14.2.
_tConstitutive Models For Piezoelectric Smart Composite Structures --
_g14.2.1.
_tModel For Piezoelectric Material
650 0 _aWave-motion, Theory of.
650 0 _aSolids
_xMathematics.
650 0 _aLightweight materials.
650 7 _aLightweight materials.
_2fast
_0(OCoLC)fst01894366
650 7 _aSolids
_xMathematics.
_2fast
_0(OCoLC)fst01125517
650 7 _aWave-motion, Theory of.
_2fast
_0(OCoLC)fst01172888
938 _aBaker and Taylor
_bBTCP
_nBK0018337874
938 _aYBP Library Services
_bYANK
_n12824945
938 _aBrodart
_bBROD
_n114790787
029 1 _aCHVBK
_b374065209
029 1 _aCHBIS
_b010714101
029 1 _aAU@
_b000057313472
942 _cBOOK
994 _aZ0
_bSUPMU
948 _hNO HOLDINGS IN SUPMU - 32 OTHER HOLDINGS
596 _a1
999 _c11208
_d11208