| 000 | 15618cam a2200529 i 4500 | ||
|---|---|---|---|
| 001 | u14421 | ||
| 003 | SA-PMU | ||
| 005 | 20210418125054.0 | ||
| 008 | 160425t20172017flu b 001 0 eng | ||
| 010 | _a 2016009117 | ||
| 040 |
_aDLC _beng _erda _cDLC _dBTCTA _dYDXCP _dBDX _dOCLCF _dCUY _dIUL _dU3G |
||
| 019 | _a959872856 | ||
| 020 |
_a9781482262797 _q(alk. paper) |
||
| 020 |
_a1482262797 _q(alk. paper) |
||
| 035 |
_a(OCoLC)936350231 _z(OCoLC)959872856 |
||
| 042 | _apcc | ||
| 050 | 0 | 0 |
_aQC174.26.W28 _bG67 2017 |
| 082 | 0 | 0 |
_a531/.1133 _223 |
| 100 | 1 |
_aGopalakrishnan, S. _q(Srinivasan), _eauthor. |
|
| 245 | 1 | 0 |
_aWave propagation in materials and structures / _cSrinivasan Gopalakrishnan. |
| 264 | 1 |
_aBoca Raton : _bCRC Press, _c[2017] |
|
| 264 | 4 | _c©2017 | |
| 300 |
_axxi, 949 pages ; _c24 cm |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_aunmediated _bn _2rdamedia |
||
| 338 |
_avolume _bnc _2rdacarrier |
||
| 504 | _aIncludes bibliographical references (pages 909-938) and index. | ||
| 505 | 0 | 0 |
_aNote continued: _g14.2.2. _tConstitutive Model For Smart Piezo Composites -- _g14.3. _tConstitutive Model For Magnetostrictive Materials -- _g14.3.1. _tCoupled Constitutive Model -- _g14.4. _tConstitutive Model For Electrostrictive Materials -- _g14.4.1. _tConstitutive Relation Using Polarization -- _g14.4.2. _tQuadratic Model -- _g14.4.3. _tHyperbolic Tangent Constitutive Relations -- _g14.5. _tWave Propagation In Structures With Piezo-Electric And Electrostrictive Actuators -- _g14.5.1. _tGoverning Equation For A Beam With Electrostrictive Actuator -- _g14.5.2. _tGoverning Equation For Beam With Piezoelectric Actuator -- _g14.5.3. _tComputation Of Wavenumbers And Group Speeds -- _g14.5.4. _tSpectral Finite Element Formulation -- _g14.5.5. _tNumerical Examples -- _g14.6. _tWave Propagation In A Composite Beam With Embedded Magnetostrictive Patches -- _g14.6.1. _tNth-Order Shear Deformation Theory With mth-Order Poisson Lateral Contraction -- _g14.6.2. _tSpectral Analysis -- _g14.6.3. _tNumerical Examples -- _g15.1. _tWave Propagation In Single Delaminated Composite Beams -- _g15.1.1. _tNumerical Examples -- _g15.2. _tWave Propagation In Beams With Multiple Delaminations -- _g15.2.1. _tNumerical Example -- _g15.3. _tWave Propagation In A Composite Beam With Fiber Breaks Or Vertical Cracks -- _g15.3.1. _tModeling Dynamic Contact Between Crack Surfaces -- _g15.3.2. _tModeling Of Surface-Breaking Cracks -- _g15.3.3. _tDistributed Constraints At The Interfaces Between Sub-Laminates And Hanging Laminates -- _g15.3.4. _tNumerical Example -- _g15.4. _tWave Propagation In Degraded Composite Structures -- _g15.4.1. _tEmpirical Degraded Model -- _g15.4.2. _tAverage Degradation Model -- _g15.4.3. _tNumerical Example -- _g15.5. _tWave Propagation In A 2D Plate With Vertical Cracks -- _g15.5.1. _tFlexibility Along The Crack -- _g15.6. _tWave Propagation In Porous Beams -- _g15.6.1. _tModified Rule Of Mixtures -- _g15.6.2. _tNumerical Results -- _g16.1. _tGeneral Considerations On The Repetitive Volume Elements -- _g16.2. _tTheory Of Bloch Waves -- _g16.3. _tSpectral Finite Element Model For Periodic Structures -- _g16.3.1. _tSpectral Super Element Approach -- _g16.3.2. _tEfficient Computation Of [KSS] -- _g16.4. _tDispersion Characteristics Of A Periodic Wave-Guide With Defects -- _g16.4.1. _tDeterminantal Equation Approach -- _g16.4.2. _tTransfer Matrix Eigenvalue Approach -- _g16.5. _tNumerical Examples -- _g16.5.1. _tBeam With Periodic Cracks -- _g16.6. _tSFEM For Periodic Structures -- _g16.6.1. _tWave Propagation Analysis -- _g16.6.2. _tComparison Of Computational Efficiency Of Periodic SFEM Model As Opposed To FEM -- _g17.1. _tMonte Carlo Simulations In The SFEM Environment -- _g17.2. _tResults And Discussion -- _g17.2.1. _tEffect Of Uncertainty On Velocity Time Histories -- _g17.2.2. _tComparison Of Computational Efficiency Of FEM And SFEM Under MCS -- _g17.2.3. _tDistribution Of Time Of Arrival Of The First Reflection -- _g17.2.4. _tEffect Of Loading Frequency On The Time Histories -- _g17.2.5. _tWavenumber COV For Different Material Property Distribution -- _g17.2.6. _tWavenumber Distributions For Different Type Of Input Distribution -- _g17.2.7. _tEffect Of Material Uncertainty On Wavenumbers Obtained Using Higher-Order Theories -- _g18.1. _tTheory Of Hyperelasticity -- _g18.2. _tNon-Linear Governing Equation For An Isotropic Rod -- _g18.3. _tTime Domain Finite Element Models For Hyperelastic Analysis -- _g18.3.1. _tStandard Galerkin Finite Element Model (SGFEM) -- _g18.3.2. _tTime Domain Spectral Finite Element Model (TDSFEM) -- _g18.3.3. _tTaylor-Galerkin Finite Element Model (TGFEM) -- _g18.3.4. _tGeneralized Galerkin Finite Element Model (GGFEM) -- _g18.4. _tFsfem For Hyperelastic Wave Propagation -- _g18.5. _tNumerical Results And Discussion -- _g18.5.1. _tPerformance Comparison Of Finite Element Schemes -- _g18.5.2. _tPerformance Of Frequency Domain Spectral Finite Element Model -- _g18.5.3. _tEffect Of Non-Linearity On Wave Propagation In Hyperelastic Waveguides -- _g18.5.4. _tSummary Of Numerical Efficiency Of Different Finite Element Schemes -- _g18.6. _tNon-Linear Flexural Wave Propagation In Hyperelastic Timoshenko Beams -- _g18.6.1. _tNumerical Results And Discussion. |
| 505 | 0 | 0 |
_aMachine generated contents note: _g1.1. _tEssential Components Of A Wave -- _g1.1.1. _tStanding Waves -- _g1.2. _tNeed For Wave Propagation Analysis In Structures And Materials -- _g1.3. _tOrganization And Scope Of The Book -- _g2.1. _tIntroduction To The Theory Of Elasticity -- _g2.1.1. _tDescription Of Motion -- _g2.1.2. _tStrain -- _g2.1.3. _tStrain-Displacement Relations -- _g2.1.4. _tStress -- _g2.1.5. _tPrincipal Stresses -- _g2.1.6. _tConstitutive Relations -- _g2.1.7. _tElastic Symmetry -- _g2.1.8. _tGoverning Equations Of Motion -- _g2.1.9. _tDimensional Reduction Of 3D Elasticity Problems -- _g2.1.10. _tPlane Problems In Elasticity: Reduction To Two Dimensions -- _g2.1.11. _tSolution Procedures In Linear Theory Of Elasticity -- _g2.2. _tTheory Of Gradient Elasticity -- _g2.2.1. _tEringen's Stress Gradient Theory -- _g2.2.2. _tStrain Gradient Theory -- _g3.1. _tIntroduction To Composite Materials -- _g3.2. _tTheory Of Laminated Composites -- _g3.2.1. _tMicro-Mechanical Analysis Of Composites -- _g3.2.2. _tMacro-Mechanical Analysis Of Composites -- _g3.2.3. _tClassical Lamination Plate Theory -- _g3.3. _tIntroduction To Functionally Graded Materials (FGM) -- _g3.3.1. _tModeling Of FGM Structures -- _g4.1. _tFourier Transforms -- _g4.1.1. _tFourier Series -- _g4.1.2. _tDiscrete Fourier Transform -- _g4.2. _tShort-Term Fourier Transform (STFT) -- _g4.3. _tWavelet Transforms -- _g4.3.1. _tDaubechies Compactly Supported Wavelets -- _g4.3.2. _tDiscrete Wavelet Transform (DWT) -- _g4.4. _tLaplace Transforms -- _g4.4.1. _tNeed For Numerical Laplace Transform -- _g4.4.2. _tNumerical Laplace Transform -- _g4.5. _tComparative Merits And Demerits Of Different Transforms -- _g5.1. _tConcept Of Wavenumber, Group Speeds, And Phase Speeds -- _g5.2. _tWave Propagation Terminologies -- _g5.3. _tSpectral Analysis Of Motion -- _g5.3.1. _tSecond-Order System -- _g5.3.2. _tFourth-Order System -- _g5.4. _tGeneral Form Of Wave Equations And Their Characteristics -- _g5.4.1. _tGeneral Form Of Wave Equations -- _g5.5. _tDifferent Methods Of Computing Wavenumbers And Wave Amplitudes -- _g5.5.1. _tMethod 1: The Companion Matrix And The SVD Technique -- _g5.5.2. _tMethod 2: Linearization Of PEP -- _g6.1. _tHamilton's Principle -- _g6.2. _tWave Propagation In 1D Elementary Waveguides -- _g6.2.1. _tLongitudinal Wave Propagation In Rods -- _g6.2.2. _tFlexural Wave Propagation In Beams -- _g6.2.3. _tWave Propagation In A Framed Structure -- _g6.3. _tWave Propagation In Higher-Order Waveguides -- _g6.3.1. _tWave Propagation In A Timoshenko Beam -- _g6.3.2. _tWave Propagation In A Mindlin-Herrmann Rod -- _g6.4. _tWave Propagation In Rotating Beams -- _g6.5. _tWave Propagation In Tapered Waveguides -- _g6.5.1. _tWave Propagation In A Tapered Rod With Exponential Depth Variation -- _g6.5.2. _tWave Propagation In A Tapered Rod With Polynomial Depth Variation -- _g6.5.3. _tWave Propagation In A Tapered Beam -- _g7.1. _tGoverning Equations Of Motion -- _g7.1.1. _tSolution Of Navier's Equation -- _g7.1.2. _tPropagation Of Waves In Infinite 2D Media -- _g7.1.3. _tWave Propagation In Semi-Infinite 2D Media -- _g7.1.4. _tWave Propagation In Doubly Bounded Media -- _g7.1.5. _tTraction-Free Surfaces: A Case Of Lamb Wave Propagation -- _g7.2. _tWave Propagation In Thin Plates -- _g7.2.1. _tSpectral Analysis -- _g8.1. _tWave Propagation In A 1D Laminated Composite Waveguide -- _g8.1.1. _tComputation Of Wavenumbers -- _g8.1.2. _tWavenumber And Wave Speeds In 1D Elementary Composite Beams -- _g8.2. _tWave Propagation In Thick 1D Laminated Composite Waveguides -- _g8.2.1. _tWave Motion In Thick Composite Beam -- _g8.3. _tWave Propagation In Composite Cylindrical Tubes -- _g8.3.1. _tLinear Wave Motion In Composite Tubes -- _g8.3.2. _tWave Propagation In Thin Composite Tubes -- _g8.4. _tWave Propagation In Two-Dimensional Composite Waveguides -- _g8.4.1. _tFormulation Of Governing Equations And Computation Of Wavenumbers -- _g8.5. _tWave Propagation In 2D Laminated Composite Plates -- _g8.5.1. _tGoverning Equations And Wavenumber Computations -- _g9.1. _tWave Propagation In Sandwich Beams Based On Extended Higher-Order Sandwich Plate Theory (EHSAPT) -- _g9.1.1. _tGoverning Differential Equations -- _g9.1.2. _tWave Propagation Characteristics -- _g9.2. _tWave Propagation In 2D Sandwich Plate Wave-Guides -- _g9.2.1. _tGoverning Differential Equations -- _g9.2.2. _tComputation Of Wave Parameters -- _g9.2.3. _tNumerical Examples -- _g10.1. _tWave Propagation In Lengthwise Graded Rods -- _g10.2. _tWave Propagation In A Depthwise Graded FGM Beam -- _g10.3. _tWave Propagation On Lengthwise Graded Beam -- _g10.4. _tWave Propagation In 2D Functionally Graded Structures -- _g10.5. _tThermo-Elastic Wave Propagation In Functionally Graded Waveguides -- _g11.1. _tIntroduction To Nanostructures -- _g11.1.1. _tStructure Of Carbon Nanotubes -- _g11.2. _tWave Propagation In MWCNTS Using The Local Euler-Bernoulli Model -- _g11.2.1. _tWave Parameters Computation -- _g11.3. _tWave Propagation In MWCNT Through A Local Shell Model -- _g11.3.1. _tGoverning Differential Equations -- _g11.3.2. _tCalculation Of Wavenumbers -- _g11.4. _tWave Propagation In Non-Local Stress Gradient Nanorods -- _g11.4.1. _tGoverning Equations Of ESGT Nanorods -- _g11.5. _tAxial Wave Propagation In Non-Local Strain Gradient Nanorods -- _g11.5.1. _tGoverning Equation For Second-Order Strain Gradient Model -- _g11.5.2. _tGoverning Equation For Fourth-Order Strain Gradient Model -- _g11.5.3. _tUniqueness And Stability Of SOSGT Nanorods -- _g11.5.4. _tAxial Wave Propagation In SOSGT Nanorods -- _g11.5.5. _tAxial Wave Characteristics Of The Fourth-Order SGT Model -- _g11.5.6. _tWave Propagation Analysis -- _g11.6. _tWave Propagation In Higher-Order Nanorods Using The ESGT Model -- _g11.7. _tWave Propagation In Nanobeams Using ESGT Formulations -- _g11.7.1. _tTransverse Wave Propagation In The ESGT Model-Based Euler-Bernoulli Nanobeam -- _g11.7.2. _tTransverse Wave Propagation In An ESGT Model-Based Timoshenko Nanobeam -- _g11.8. _tWave Propagation In Mwcnt Using The ESGT Model -- _g11.8.1. _tWave Dispersion In SWCNTS -- _g11.8.2. _tWave Dispersion In DWCNTS -- _g11.9. _tWave Propagation In Graphene -- _g11.9.1. _tGoverning Equations For Flexural Wave Propagation In Monolayer Graphene Sheets -- _g11.9.2. _tWave Dispersion Analysis -- _g11.10. _twave Propagation In Graphene In An Elastic Medium -- _g11.10.1. _tWave Dispersion Analysis -- _g11.11. _tWave Propagation In A Cnt-Reinforced Nanocomposite Beam -- _g11.11.1. _tGoverning Equation -- _g11.11.2. _tComputation Of Wavenumbers And Group Speeds -- _g12.1. _tIntroductory Concepts -- _g12.2. _tVariational Principles -- _g12.2.1. _tWork And Complementary Work -- _g12.2.2. _tStrain Energy And Complementary Strain Energy -- _g12.2.3. _tWeighted Residual Techniques -- _g12.2.4. _tEnergy Functional -- _g12.2.5. _tWeak Form Of The Governing Differential Equation -- _g12.3. _tEnergy Theorems -- _g12.3.1. _tPrinciple Of Virtual Work -- _g12.3.2. _tPrinciple Of Minimum Potential Energy (PMPE) -- _g12.3.3. _tRayleigh-Ritz Method -- _g12.4. _tFinite Element Formulation: H -- Type Formulation -- _g12.4.1. _tShape Functions -- _g12.4.2. _tDerivation Of Finite Element Equations -- _g12.4.3. _tIsoparametric Formulation -- _g12.4.4. _tNumerical Integration And Gauss Quadrature -- _g12.4.5. _tMass And Damping Matrix Formulation -- _g12.5. _tSuperconvergent Fe Formulation -- _g12.5.1. _tFormulation Of A Superconvergent Laminated Composite FSDT Beam Element -- _g12.6. _tTime Domain Spectral Finite Element Formulation- Ap -- Type Finite Element Formulation -- _g12.6.1. _tOrthogonal Polynomials -- _g12.7. _tSolution Methods For Finite Element Method -- _g12.7.1. _tFinite Element Equation Solution In Static Analysis -- _g12.7.2. _tFinite Element Equation Solution In Dynamic Analysis -- _g12.8. _tDirect Time Integration -- _g12.8.1. _tExplicit Time Integration Techniques -- _g12.8.2. _tImplicit Time Integration -- _g12.8.3. _tNewmark beta Method -- _g12.9. _tNumerical Examples -- _g12.9.1. _tSuper-Convergent Beam Element -- _g12.9.2. _tTime Domain Spectral FEM -- _g12.10. _tmodeling Guidelines For Wave Propagation Problems -- _g13.1. _tIntroduction To Spectral Finite Element Method -- _g13.1.1. _tGeneral Formulation Procedure Of SFEM: Fourier Transform -- _g13.1.2. _tGeneral Formulation Procedure: Wavelet Transform -- _g13.1.3. _tGeneral Formulation Procedure: Laplace Transform -- _g13.2. _tFourier Transform-Based Spectral Finite Element Formulation -- _g13.2.1. _tSpectral Rod Element -- _g13.2.2. _tSpectrally Formulated Elementary Beam Element -- _g13.2.3. _tHigher-Order 1D Composite Waveguides -- _g13.2.4. _tSpectral Element For Framed Structures -- _g13.2.5. _tWave Propagation Through An Angled Joint |
| 505 | 0 | 0 |
_t-- _g13.2.6. _tComposite 2D Layer Element -- _g13.2.7. _tPropagation Of Surface And Interfacial Waves In Laminated Composites -- _g13.2.8. _tDetermination Of Lamb Wave Modes In Laminated Composites -- _g13.2.9. _tSpectral Element Formulation For An Anisotropic Plate -- _g13.2.10. _tSpectral Finite Element Formulation Of A Stiffened Composite Structure -- _g13.2.11. _tNumerical Examples Wave Propagation In Stiffened Structures -- _g13.2.12. _tMerits And Demerits Of Fourier Spectral Finite Element Method -- _g13.2.13. _tSignal Wraparound Problems In FSFEM -- _g13.3. _tWavelet Transform-Based Spectral Finite Element Formulation -- _g13.3.1. _tGoverning Equations And Their Reduction To Ordinary Differential Equations -- _g13.3.2. _tPeriodic Boundary Conditions -- _g13.3.3. _tEstimation Of Wavenumber And Group Speeds: Existence Of Artificial Dispersion -- _g13.3.4. _tNon-Periodic Boundary Condition -- _g13.3.5. _tSpectral Element Formulation -- _g13.3.6. _tNumerical Examples -- _g13.4. _tLaplace Transform-Based Spectral Finite Element Formulation -- _g13.4.1. _tAnalogy For The Numerical Damping Factor -- _g13.4.2. _tComputation Of Wavenumbers And Group Speeds -- _g13.4.3. _tNumerical Examples -- _g14.1. _tIntroduction -- _g14.2. _tConstitutive Models For Piezoelectric Smart Composite Structures -- _g14.2.1. _tModel For Piezoelectric Material |
| 650 | 0 | _aWave-motion, Theory of. | |
| 650 | 0 |
_aSolids _xMathematics. |
|
| 650 | 0 | _aLightweight materials. | |
| 650 | 7 |
_aLightweight materials. _2fast _0(OCoLC)fst01894366 |
|
| 650 | 7 |
_aSolids _xMathematics. _2fast _0(OCoLC)fst01125517 |
|
| 650 | 7 |
_aWave-motion, Theory of. _2fast _0(OCoLC)fst01172888 |
|
| 938 |
_aBaker and Taylor _bBTCP _nBK0018337874 |
||
| 938 |
_aYBP Library Services _bYANK _n12824945 |
||
| 938 |
_aBrodart _bBROD _n114790787 |
||
| 029 | 1 |
_aCHVBK _b374065209 |
|
| 029 | 1 |
_aCHBIS _b010714101 |
|
| 029 | 1 |
_aAU@ _b000057313472 |
|
| 942 | _cBOOK | ||
| 994 |
_aZ0 _bSUPMU |
||
| 948 | _hNO HOLDINGS IN SUPMU - 32 OTHER HOLDINGS | ||
| 596 | _a1 | ||
| 999 |
_c11208 _d11208 |
||