000 04552cam a2200673 i 4500
001 u12551
003 SA-PMU
005 20210418123306.0
008 160114s2017 nju 001 0 eng c
010 _a 2015048305
040 _aWaSeSS/DLC
_beng
_erda
_cDLC
_dOCLCF
_dYDXCP
_dMYG
_dI3U
_dBTCTA
_dBDX
_dCHVBK
_dYDX
019 _a913923771
_a914218233
_a973768767
020 _a9781118877432 (cloth)
020 _a1118877438 (cloth)
020 _z9781118877524 (epub)
035 _a(OCoLC)939596191
_z(OCoLC)913923771
_z(OCoLC)914218233
_z(OCoLC)973768767
042 _apcc
050 0 0 _aHF5691
_b.S43245 2017
082 0 0 _a006.3/12
_223
100 1 _aShmueli, Galit,
_d1971-
_eauthor.
245 1 0 _aData mining for business analytics :
_bconcepts, techniques, and applications in JMP Pro /
_cGalit Shmueli, Peter C. Bruce, Mia L. Stephens, Nitin R. Patel.
264 1 _aHoboken, New Jersey :
_bWiley,
_c2017.
300 _axxii, 442 pages ;
_c27 cm
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
500 _aIncludes index.
504 _aIncludes bibliographical references and index.
505 0 _aOverview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- K-nearest neighbors (kNN) -- The naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Cases.
520 _aData Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter; End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material; Data-rich case studies to illustrate various applications of data mining techniques; A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.--Publisher website.
630 0 0 _aJMP (Computer file)
630 0 7 _aJMP (Computer file)
_2fast
_0(OCoLC)fst01385779
650 0 _aBusiness mathematics
_xComputer programs.
650 0 _aBusiness
_xData processing.
650 0 _aData mining.
650 7 _aBusiness
_xData processing.
_2fast
_0(OCoLC)fst00842293
650 7 _aBusiness mathematics
_xComputer programs.
_2fast
_0(OCoLC)fst00842783
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
650 7 _aData Mining
_2gnd
650 7 _aBusiness Intelligence
_2gnd
700 1 _aBruce, Peter C.,
_d1953-
_eauthor.
700 1 _aStephens, Mia L.,
_eauthor.
700 1 _aPatel, Nitin R.
_q(Nitin Ratilal),
_eauthor.
938 _aBrodart
_bBROD
_n119067862
938 _aBaker and Taylor
_bBTCP
_nBK0017427427
938 _aBrodart
_bBROD
_n113406452
938 _aYBP Library Services
_bYANK
_n12529712
029 1 _aAU@
_b000057129962
029 1 _aCHNEW
_b000854130
029 1 _aCHVBK
_b365605824
029 1 _aCHVBK
_b43907682X
029 1 _aCHDSB
_b006678549
029 1 _aCHVBK
_b484447750
029 1 _aCHBIS
_b010636962
942 _cBOOK
994 _aZ0
_bSUPMU
948 _hNO HOLDINGS IN SUPMU - 27 OTHER HOLDINGS
596 _a1 2
999 _c2437
_d2437