000 02059cam a2200349 a 4500
001 u3171
003 SA-PMU
005 20210418123403.0
008 020726s2002 enka 001 0 eng
010 _a 2002029063
040 _aDLC
_cDLC
_dUKM
_dBAKER
_dBTCTA
_dLVB
_dYDXCP
_dCUD
_dHEBIS
_dZ@L
020 _a0198507178 (hbk : alk. paper)
020 _a9780198507178 (hbk : alk. paper)
020 _a0198507186 (pbk : alk. paper)
020 _a9780198507185 (pbk : alk. paper)
035 _a(OCoLC)50285245
_z(OCoLC)50270048
_z(OCoLC)51528054
050 0 0 _aQA76.9.M35
_bB54 2002
082 0 4 _a510
_221
100 1 _aBiggs, Norman.
245 1 0 _aDiscrete mathematics /
_cNorman L. Biggs.
250 _a2nd ed.
260 _aOxford [England] ;
_aNew York :
_bOxford University Press,
_c2002.
300 _axiv, 425 p. :
_bill. ;
_c26 cm.
500 _aIncludes index.
505 0 _aPt. I. Foundations. 1. Statements and proofs. 2. Set notation. 3. The logical framework. 4. Natural numbers. 5. Functions. 6. How to count. 7. Integers. 8. Divisibility and prime numbers. 9. Fractions and real numbers -- Pt. II. Techniques. 10. Principles of counting. 11. Subsets and designs. 12. Partition, classification, and distribution. 13. Modular arithmetic -- Pt. III. Algorithms and Graphs. 14. Algorithms and their efficiency. 15. Graphs. 16. Trees, sorting, and searching. 17. Bipartite graphs and matching problems. 18. Digraphs, networks, and flows. 19. Recursive techniques -- Pt. IV. Algebraic Methods. 20. Groups. 21. Groups of permutations. 22. Rings, fields, and polynomials. 23. Finite fields and some applications. 24. Error-correcting codes. 25. Generating functions. 26. Partitions of a positive integer. 27. Symmetry and counting.
650 0 _aComputer science
_xMathematics.
856 4 2 _3Publisher description
_uhttp://catdir.loc.gov/catdir/enhancements/fy0613/2002029063-d.html
856 4 1 _3Table of contents only
_uhttp://catdir.loc.gov/catdir/enhancements/fy0613/2002029063-t.html
942 _cBOOK
994 _aZ0
_bSUPMU
596 _a1 2
999 _c2841
_d2841