| 000 | 08878cam a2200529 a 4500 | ||
|---|---|---|---|
| 001 | u14711 | ||
| 003 | SA-PMU | ||
| 005 | 20210418123445.0 | ||
| 008 | 111031s2012 njuab b 001 0 eng | ||
| 010 | _a 2011044321 | ||
| 040 |
_aDLC _beng _cDLC _dYDX _dBTCTA _dUKMGB _dYDXCP _dBWX _dBDX _dCDX _dPUL _dCOO _dUPM _dPHADU _dOCLCF _dOCLCQ _dMYPMP _dOCLCQ _dCNCEN _dOCLCQ |
||
| 016 | 7 |
_a015826151 _2Uk |
|
| 019 |
_a799798933 _a851758012 _a863250078 |
||
| 020 |
_a9781118074794 _q(acid free paper) |
||
| 020 |
_a1118074793 _q(acid free paper) |
||
| 035 |
_a(OCoLC)727710302 _z(OCoLC)799798933 _z(OCoLC)851758012 _z(OCoLC)863250078 |
||
| 042 | _apcc | ||
| 050 | 0 | 0 |
_aTK1001 _b.M5985 2012 |
| 082 | 0 | 0 |
_a621.31 _223 |
| 084 |
_aTEC031000 _2bisacsh |
||
| 100 | 1 | _aMohan, Ned. | |
| 245 | 1 | 0 |
_aElectric power systems : _ba first course / _cNed Mohan. |
| 260 |
_aHoboken, N.J. : _bJohn Wiley & Sons, _c©2012. |
||
| 300 |
_axii, 243 pages : _billustrations, maps ; _c27 cm |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_aunmediated _bn _2rdamedia |
||
| 338 |
_avolume _bnc _2rdacarrier |
||
| 520 |
_a"Author Ned Mohan has been a leader in EES education and research for decades. His three-book series on Power Electronics focuses on three essential topics in the power sequence based on applications relevant to this age of sustainable energy such as wind turbines and hybrid electric vehicles. The three topics include power electronics, power systems and electric machines. Key features in the first Edition build on Mohan's successful MNPERE texts; his systems approach which puts dry technical detail in the context of applications; and substantial pedagogical support including PPT's, video clips, animations, clicker questions and a lab manual. It follows a top-down systems-level approach to power electronics to highlight interrelationships between these sub-fields. It's intended to cover fundamental and practical design. This book also follows a building-block approach to power electronics that allows an in-depth discussion of several important topics that are usually left. Topics are carefully sequenced to maintain continuity and interest."-- _cProvided by publisher. |
||
| 504 | _aIncludes bibliographical references and index. | ||
| 500 | _aMachine generated contents note: Chapter 1: Power Systems: A Changing Landscape Chapter 2: Review of Basic Electric Circuits and Electromagnetic Concepts Chapter 3: Electric Energy and the Environment Chapter 4: AC Transmission Lines and Underground Cables Chapter 5: Power Flow in Power System Networks Chapter 6: Transformers in Power Systems Chapter 7: High Voltage DC (HVDC) Transmission Systems Chapter 8: Distribution Systems, Loads and Power Quality Chapter 9: Synchronous Generators Chapter 10: Voltage Regulation and Stability in Power Systems Chapter 11: Transient and Dynamic Stability of Power Systems Chapter 12: Control of Interconnected Power Systems and Economic Dispatch Chapter 13: Transmission Line Faults, Relaying and Circuit Breakers Chapter 14: Transient Over-Voltages, Surge Protection and Insulation Coordination. | ||
| 505 | 0 | _aMachine generated contents note: ch. 1 Power Systems: A Changing Landscape -- 1.1. Nature of Power Systems -- 1.2. Changing Landscape of Power Systems and Utility Deregulation -- 1.3. Topics in Power Systems -- References -- Problems -- ch. 2 Review Of Basic Electric Circuits And Electromagnetic Concepts -- 2.1. Introduction [1] -- 2.2. Phasor Representation in Sinusoidal Steady State -- 2.3. Power, Reactive Power, and Power Factor -- 2.4. Three-Phase Circuits -- 2.5. Real and Reactive Power Transfer Between AC Systems -- 2.6. Apparatus Ratings, Base Values, and Per-Unit Quantities -- 2.7. Energy Efficiencies of Power System Apparatus -- 2.8. Electromagnetic Concepts -- Reference -- Problems -- Appendix 2A -- ch. 3 Electric Energy And The Environment -- 3.1. Introduction -- 3.2. Choices and Consequences -- 3.3. Hydro Power -- 3.4. Fossil Fuel -- Based Power Plants -- 3.5. Nuclear Power -- 3.6. Renewable Energy -- 3.7. Distributed Generation (DG) -- 3.8. Environmental Consequences and Remedial Actions -- 3.9. Resource Planning -- References -- Problems -- ch. 4 AC Transmission Lines And Underground Cables -- 4.1. Need for Transmission Lines and Cables -- 4.2. Overhead AC Transmission Lines -- 4.3. Transposition of Transmission Line Phases -- 4.4. Transmission Lines Parameters -- 4.5. Distributed-Parameter Representation of Transmission Lines in Sinusoidal Steady State -- 4.6. Surge Impedance Zc and the Surge Impedance Loading (SII) -- 4.7. Lumped Transmission Line Models in Steady State -- 4.8. Cables [8] -- References -- Problems -- Appendix 4A Long Transmission Lines -- ch. 5 Power Flow In Power System Networks -- 5.1. Introduction -- 5.2. Description of the Power System -- 5.3. Example Power System -- 5.4. Building the Admittance Matrix -- 5.5. Basic Power Flow Equations -- 5.6. Newton-Raphson Procedure -- 5.7. Solution of Power Flow Equations Using N-R Method -- 5.8. Fast Decoupled N-R Method for Power Flow -- 5.9. Sensitivity Analysis -- 5.10. Reaching the Bus Var Limit -- 5.11. Synchronized Phasor Measurements, Phasor Measurement Units (PMUs), and Wide-Area Measurement Systems -- References -- Problems -- Appendix 5A Gauss-Seidel Procedure for Power Flow Calculations -- ch. 6 Transformers In Power Systems -- 6.1. Introduction -- 6.2. Basic Principles of Transformer Operation -- 6.3. Simplified Transformer Model -- 6.4. Per-Unit Representation -- 6.5. Transformer Efficiencies and Leakage Reactances -- 6.6. Regulation in Transformers -- 6.7. Auto-Transformers -- 6.8. Phase-Shift Introduced by Transformers -- 6.9. Three-Winding Transformers -- 6.10. Three-Phase Transformers -- 6.11. Representing Transformers with Off-Nominal Turns Ratios, Taps, and Phase-Shift -- References -- Problems -- ch. 7 High Voltage DC (HVDC) Transmission Systems -- 7.1. Introduction -- 7.2. Power Semiconductor Devices and Their Capabilities -- 7.3. HVDC Transmission Systems -- 7.4. Current-Link HVDC Systems -- 7.5. Voltage-Link HVDC Systems -- References -- Problems -- ch. 8 Distribution System, Loads, And Power Quality -- 8.1. Introduction -- 8.2. Distribution Systems -- 8.3. Power System Loads -- 8.4. Power Quality Considerations -- 8.5. Load Management [6,7] and Smart Grid -- 8.6. Price of Electricity [3] -- References -- Problems -- ch. 9 Synchronous Generators -- 9.1. Introduction -- 9.2. Structure -- 9.3. Induced EMF in the Stator Windings -- 9.4. Power Output, Stability, and the Loss of Synchronism -- 9.5. Field Excitation Control to Adjust Reactive Power -- 9.6. Field Exciters for Automatic Voltage Regulation (AVR) -- 9.7. Synchronous, Transient, and Subtransient Reactances -- References -- Problems -- ch. 10 Voltage Regulation And Stability In Power Systems -- 10.1. Introduction -- 10.2. Radial System as an Example -- 10.3. Voltage Collapse -- 10.4. Prevention of Voltage Instability -- References -- Problems -- ch. 11 Transient And Dynamic Stability Of Power Systems -- 11.1. Introduction -- 11.2. Principle of Transient Stability -- 11.3. Transient Stability Evaluation in Large Systems -- 11.4. Dynamic Stability -- References -- Problems -- Appendix 11A Inertia, Torque and Acceleration in Rotating Systems -- ch. 12 Control Of Interconnected Power System And Economic Dispatch -- 12.1. Control Objectives -- 12.2. Voltage Control by Controlling Excitation and the Reactive Power -- 12.3. Automatic Generation Control (AGC) -- 12.4. Economic Dispatch and Optimum Power Flow -- References -- Problems -- ch. 13 Transmission Line Faults, Relaying, And Circuit Breakers -- 13.1. Causes of Transmission Line Faults -- 13.2. Symmetrical Components for Fault Analysis -- 13.3. Types of Faults -- 13.4. System Impedances for Fault Calculations -- 13.5. Calculation of Fault Currents in Large Networks -- 13.6. Protection against Short-Circuit Faults -- References -- Problems -- ch. 14 Transient Overvoltages, Surge Protection, And Insulation Coordination -- 14.1. Introduction -- 14.2. Causes of Overvoltages -- 14.3. Transmission Line Characteristics and Representation -- 14.4. Insulation to Withstand Overvoltages -- 14.5. Surge Arresters and Insulation Coordination -- References. | |
| 650 | 0 | _aElectric power systems. | |
| 650 | 7 |
_aTECHNOLOGY & ENGINEERING _xPower Resources _xGeneral. _2bisacsh |
|
| 650 | 7 |
_aElectric power systems. _2fast _0(OCoLC)fst00905529 |
|
| 938 |
_aBrodart _bBROD _n13524860 _c$105.00 |
||
| 938 |
_aBaker and Taylor _bBTCP _nBK0009857889 |
||
| 938 |
_aCoutts Information Services _bCOUT _n17665278 |
||
| 938 |
_aYBP Library Services _bYANK _n6831216 |
||
| 029 | 1 |
_aAU@ _b000048101539 |
|
| 029 | 1 |
_aCHBIS _b006859125 |
|
| 029 | 1 |
_aCHVBK _b178335738 |
|
| 029 | 1 |
_aNZ1 _b14160953 |
|
| 942 | _cBOOK | ||
| 994 |
_aZ0 _bSUPMU |
||
| 948 | _hNO HOLDINGS IN SUPMU - 104 OTHER HOLDINGS | ||
| 596 | _a1 | ||
| 999 |
_c3182 _d3182 |
||