000 04101cam a2200301 a 4500
001 u4197
003 SA-PMU
005 20210418123635.0
008 060523s2007 gw a b 001 0 eng
040 _aUKM
_beng
_cUKM
_dBAKER
_dIXA
_dYDXCP
_dBTCTA
_dOCLCQ
_dHEBIS
_dCDN
_dDEBBG
_dOCL
_dOCLCQ
020 _a9783527315376 (hbk.)
020 _a3527315373 (hbk.)
035 _a(OCoLC)71348104
042 _aukblsr
050 4 _aTA460
_b.K787 2007
082 0 4 _a620.166
_222
100 1 _aKrupp, Ulrich,
_cPh. D.
245 1 0 _aFatigue crack propagation in metals and alloys :
_bmicrostructural aspects and modelling concepts /
_cUlrich Krupp.
260 _aWeinheim :
_bWiley-VCH ;
_aChichester :
_bJohn Wiley [distributor],
_c2007.
300 _axxii, 287 p. :
_bill. ;
_c25 cm.
504 _aIncludes bibliographical references and index.
505 0 _aCover -- Foreword -- Contents -- Symbols and Abbreviations -- 1 Introduction -- 2 Basic Concepts of Metal Fatigue and Fracture in the Engineering Design Process -- 2.1 Historical Overview -- 2.2 Metal Fatigue, Crack Propagation and Service-Life Prediction: A Brief Introduction -- 2.2.1 Fundamental Terms in Fatigue of Materials -- 2.2.2 Fatigue-Life Prediction: Total-Life and Safe-Life Approach -- 2.2.3 Fatigue-Life Prediction: Damage-Tolerant Approach -- 2.2.4 Methods of Fatigue-Life Prediction at a Glance -- 2.3 Basic Concepts of Technical Fracture Mechanics -- 2.3.1 The K Concept of LEFM -- 2.3.2 Crack-Tip Plasticity: Concepts of Plastic-Zone Size -- 2.3.3 Crack-Tip Plasticity: The J Integral -- 3 Experimental Approaches to Crack Propagation -- 3.1 Mechanical Testing -- 3.1.1 Testing Systems -- 3.1.2 Specimen Geometries -- 3.1.3 Local Strain Measurement: The ISDG Technique -- 3.2 Crack-Propagation Measurements -- 3.2.1 Potential-Drop Concepts and Fracture Mechanics Experiments -- 3.2.2 In Situ Observation of the Crack Length -- 3.3 Methods of Microstructural Analysis and Quantitative Characterization of Grain and Phase Boundaries -- 3.3.1 Analytical SEM: Topography Contrast to Study Fracture Surfaces -- 3.3.2 SEM Imaging by Backscattered Electrons and EBSD -- 3.3.3 Evaluation of Kikuchi Patterns: Automated EBSD -- 3.3.4 Orientation Analysis Using TEM and X-Ray Diffraction -- 3.3.5 Mathematical and Graphical Description of Crystallographic Orientation Relationships -- 3.3.6 Microstructure Characterization by TEM -- 3.3.7 Further Methods to Characterize Mechanical Damage Mechanisms in Materials -- 3.4 Reproducibility of Experimentally Studying the Mechanical Behavior of Materials -- 4 Physical Metallurgy of the Deformation Behavior of Metals and Alloys -- 4.1 Elastic Deformation -- 4.2 Plastic Deformation by Dislocation Motion -- 4.3 Activation of Slip Planes in Single- and Polycrystalline Materials -- 4.4 Special Features of the Cyclic Deformation of Metallic Materials -- 5 Initiation of Microcracks -- 5.1 Crack Initiation: Definition and Significance -- 5.1.1 Influence of Notches, Surface Treatment and Residual Stresses -- 5.2 Influence of Microstructual Factors on the Initiation of Fatigue Cracks -- 5.2.1 Crack Initiation at the Surface: General Remarks -- 5.2.2 Crack Initiation at Inclusions and Pores -- 5.2.3 Crack Initiation at Persistent Slip Bands -- 5.3 Crack Initiation by Elastic Anisotropy -- 5.3.1 Definition and Significance of Elastic Anisotropy -- 5.3.2 Determination of Elastic Constants and Estimation of the Elastic Anisotropy -- 5.3.3 FE Calculations of Elastic Anisotropy Stresses to Predict Crack Initiation Sites -- 5.3.4 Analytical Calculation of Elastic Anisotropy Stresses -- 5.4 Intercrystalline and Transcrystalline Crack Initiation -- 5.4.1 Influence Parameters for Intercrystalline Crack Initiation -- 5.4.2 Crack Initiation at Elevated Temperature and Environmental Effects -- 5.4.3 Transgranular Crack Initiation -- 5.5 Microstructurally Short Cracks and the Fatigue Limit -- 5.6 Crack Initiation in Inhomogeneous Materials: Cellular Metals -- 6 Crack Propa.
650 0 _aMetals
_xFatigue.
650 0 _aAlloys
_xFatigue.
942 _cBOOK
994 _aZ0
_bSUPMU
596 _a1
999 _c3974
_d3974