000 | 04319cam a2200613 i 4500 | ||
---|---|---|---|
001 | u11871 | ||
003 | SA-PMU | ||
005 | 20210418124049.0 | ||
008 | 160120t20152013nyua 001 0 eng c | ||
040 |
_aOCC _beng _erda _cOCC _dOSU _dOCLCF _dUSU _dTSC |
||
020 | _a9781461471370 | ||
020 | _a1461471370 | ||
035 | _a(OCoLC)935355844 | ||
042 | _apcc | ||
050 | 4 |
_aQA276 _b.I58 2015 |
|
060 | 4 |
_aQA276 _b.I58 2015 |
|
082 | 0 |
_a519.5 _223 |
|
245 | 0 | 3 |
_aAn introduction to statistical learning : _bwith applications in R / _cGareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. |
246 | 3 | 0 | _aStatistical learning |
250 | _a[Corrected at 6th printing 2015]. | ||
264 | 1 |
_aNew York : _bSpringer : _bSpringer Science+Business Media, _c2015. |
|
264 | 4 | _c©2013 | |
300 |
_axiv, 426 pages : _billustrations (chiefly color) ; _c25 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
490 | 1 |
_aSpringer texts in statistics, _x1431-875X ; _v103 |
|
500 | _aIncludes index. | ||
505 | 0 | _aIntroduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning. | |
520 | _a"An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. Provides tools for Statistical Learning that are essential for practitioners in science, industry and other fields. Analyses and methods are presented in R. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering. Extensive use of color graphics assist the reader"--Publisher description. | ||
650 | 0 | _aMathematical statistics. | |
650 | 0 | _aMathematical models. | |
650 | 0 |
_aMathematical statistics _vProblems, exercises, etc. |
|
650 | 0 |
_aMathematical models _vProblems, exercises, etc. |
|
650 | 0 | _aR (Computer program language) | |
650 | 0 | _aStatistics. | |
650 | 7 |
_aMathematical models. _2fast _0(OCoLC)fst01012085 |
|
650 | 7 |
_aMathematical statistics. _2fast _0(OCoLC)fst01012127 |
|
650 | 7 |
_aR (Computer program language) _2fast _0(OCoLC)fst01086207 |
|
650 | 7 |
_aStatistics. _2fast _0(OCoLC)fst01132103 |
|
650 | 1 | 2 | _aModels, Statistical. |
650 | 1 | 2 | _aStatistics as Topic. |
655 | 7 |
_aProblems and exercises. _2fast _0(OCoLC)fst01423783 |
|
700 | 1 |
_aJames, Gareth _q(Gareth Michael), _eauthor. |
|
700 | 1 |
_aWitten, Daniela, _eauthor. |
|
700 | 1 |
_aHastie, Trevor, _eauthor. |
|
700 | 1 |
_aTibshirani, Robert, _eauthor. |
|
830 | 0 | _aSpringer texts in statistics. | |
029 | 1 |
_aAU@ _b000057908748 |
|
942 | _cBOOK | ||
994 |
_aZ0 _bSUPMU |
||
948 | _hNO HOLDINGS IN SUPMU - 36 OTHER HOLDINGS | ||
596 | _a1 2 | ||
999 |
_c6018 _d6018 |