000 04012cam a2200529Ii 4500
001 u11890
003 SA-PMU
005 20210418124206.0
008 121123s2013 nyua 000 0 eng d
010 _a 2012941962
040 _aUKMGB
_beng
_erda
_cUKMGB
_dOCLCO
_dBTCTA
_dBDX
_dYDXCP
_dORX
_dZNC
_dBWX
_dDLC
_dOCLCF
_dCRH
_dEDK
_dOCLCQ
_dOCLCO
_dOCL
_dOCLCQ
015 _aGBB2B9165
_2bnb
016 7 _a016218722
_2Uk
019 _a806018032
020 _a9780071778435
_q(pbk.)
020 _a0071778438
_q(pbk.)
035 _a(OCoLC)820107034
_z(OCoLC)806018032
050 0 0 _aQA184.2
_b.C593 2013
082 0 4 _a512.5
_223
100 1 _aClark, William D.
_q(William Dean),
_eauthor.
245 1 0 _aLinear algebra /
_cWilliam D. Clark, and Sandra Luna McCune.
246 3 _aPractice makes perfect,
_pLinear algebra
264 1 _aNew York, New York :
_bMcGraw Hill,
_c2013.
264 4 _c©2013
300 _avii, 223 pages :
_billustrations ;
_c28 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aPractice makes perfect
505 0 _aPreface -- Systems Of Linear Equations And Matrices: -- Systems of linear equations -- General systems of linear equations -- Matrices -- Row transformations and equivalence of matrices -- Row-echelon form -- Homogeneous systems -- Matrix Algebra: -- Matrix arithmetic -- Inverse of a square matrix -- Properties of invertible matrices -- Matrix solutions of systems of linear equations -- Transpose of a matrix -- Graphing Calculators And Matrices: -- Matrix menu -- Inputting and editing a matrix -- Matrix arithmetic -- Calculating determinants -- Transpose of a matrix -- Solving linear systems using Gauss-Jordan elimination -- Solving linear systems using X=A-1C Special Types Of Square Matrices -- Nonsingular matrices -- Triangular, diagonal, and scalar matrices -- Involutory, idempotent, and nilpotent matrices -- Symmetric and skew-symmetric matrices -- Orthogonal matrices -- Hermitian and skew-hermitian matrices -- Determinants: -- determinant of a square matrix -- Cramer's rule -- Properties of determinant -- Vectors In R11: -- Vectors in two dimensions -- Dot product of vectors -- Vectors in R11 -- Vectors as matrices -- Vector Spaces: -- Definitions and terminology of vector spaces -- Linear independence -- Basis -- Dimension -- Row space, column space, and null space -- Rank and nullity -- Inner Product Spaces: -- Definition and terminology for inner product spaces -- Norm of a vector in an inner product space -- Cauchy-Schwarz inequality and properties of the norm -- Orthogonality in inner product spaces -- Gram-Schmidt procedure -- Linear Transformations: -- Definition and terminology for linear transformations -- Kernel and image of a linear transformation -- Matrix representation of linear transformations -- Change of basis -- Algebra of linear transformations --Linear operators on R2 and R3 -- Eigenvalues And Eigenvectors: -- Eigenvalue problem -- Useful properties of eigenvalues -- Diagonalization -- Answer key.
520 _aBook Description: An advanced Practice Makes Perfect workbook for linear algebra, designed to reinforce ideas and concepts, to provide 500 exercises and answers, to offer hundreds of solved problems--making this workbook the ideal complement to class study or self-study.
650 0 _aAlgebras, Linear.
650 0 _aAlgebras, Linear
_vProblems, exercises, etc.
650 7 _aAlgebras, Linear.
_2fast
_0(OCoLC)fst00804946
655 7 _aProblems and exercises.
_2fast
_0(OCoLC)fst01423783
700 1 _aMcCune, Sandra K.,
_eauthor.
830 0 _aPractice makes perfect (McGraw-Hill Companies)
938 _aBrodart
_bBROD
_n103401059
938 _aBaker and Taylor
_bBTCP
_nBK0011928296
938 _aYBP Library Services
_bYANK
_n8533699
029 1 _aAU@
_b000050699866
029 1 _aNZ1
_b15529879
942 _cBOOK
994 _aZ0
_bSUPMU
948 _hNO HOLDINGS IN SUPMU - 112 OTHER HOLDINGS
596 _a1 2
999 _c6657
_d6657