| 000 | 01475cam a2200337 a 4500 | ||
|---|---|---|---|
| 001 | u3030 | ||
| 003 | SA-PMU | ||
| 005 | 20210418124605.0 | ||
| 008 | 070608s2007 si a b 001 0 eng c | ||
| 010 | _a 2008270006 | ||
| 040 |
_aYDXCP _beng _cYDX _dBAKER _dBTCTA _dNBU _dYDXCP _dCUS _dIAY _dUMC _dDLC _dIG# _dU6C _dOKU _dDEBBG _dOCL |
||
| 020 | _a9812706240 | ||
| 020 | _a9789812706249 | ||
| 035 | _a(OCoLC)141384911 | ||
| 042 | _apcc | ||
| 050 | 0 | 0 |
_aQA76.87 _bG77 2007 |
| 082 | 0 | 0 |
_a006.3/2 _222 |
| 100 | 1 | _aGraupe, Daniel. | |
| 245 | 1 | 0 |
_aPrinciples of artificial neural networks / _cDaniel Graupe. |
| 250 | _a2nd ed. | ||
| 260 |
_aSingapore ; _aHackensack, N.J. : _bWorld Scientific, _cc2007. |
||
| 300 |
_axv, 303 p. : _bill. ; _c26 cm. |
||
| 490 | 1 |
_aAdvanced series on circuits and systems ; _vvol. 6 |
|
| 504 | _aIncludes bibliographical references (p. 291-297) and indexes. | ||
| 505 | 0 | _aFundamentals of biological neural networks -- Basic principles of ANNs and their early structures -- The perceptron -- The madaline -- Back propagation -- Hopefield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and the neocognitron -- Statistical training -- Recurrent (time cycling) back propagation networks -- Large scale memory storage and retrieval (LAMSTAR) network. | |
| 650 | 0 | _aNeural networks (Computer science) | |
| 830 | 0 |
_aAdvanced series on circuits and systems ; _vv. 6. |
|
| 942 | _cBOOK | ||
| 994 |
_aZ0 _bSUPMU |
||
| 596 | _a1 | ||
| 999 |
_c8660 _d8660 |
||