000 01475cam a2200337 a 4500
001 u3030
003 SA-PMU
005 20210418124605.0
008 070608s2007 si a b 001 0 eng c
010 _a 2008270006
040 _aYDXCP
_beng
_cYDX
_dBAKER
_dBTCTA
_dNBU
_dYDXCP
_dCUS
_dIAY
_dUMC
_dDLC
_dIG#
_dU6C
_dOKU
_dDEBBG
_dOCL
020 _a9812706240
020 _a9789812706249
035 _a(OCoLC)141384911
042 _apcc
050 0 0 _aQA76.87
_bG77 2007
082 0 0 _a006.3/2
_222
100 1 _aGraupe, Daniel.
245 1 0 _aPrinciples of artificial neural networks /
_cDaniel Graupe.
250 _a2nd ed.
260 _aSingapore ;
_aHackensack, N.J. :
_bWorld Scientific,
_cc2007.
300 _axv, 303 p. :
_bill. ;
_c26 cm.
490 1 _aAdvanced series on circuits and systems ;
_vvol. 6
504 _aIncludes bibliographical references (p. 291-297) and indexes.
505 0 _aFundamentals of biological neural networks -- Basic principles of ANNs and their early structures -- The perceptron -- The madaline -- Back propagation -- Hopefield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and the neocognitron -- Statistical training -- Recurrent (time cycling) back propagation networks -- Large scale memory storage and retrieval (LAMSTAR) network.
650 0 _aNeural networks (Computer science)
830 0 _aAdvanced series on circuits and systems ;
_vv. 6.
942 _cBOOK
994 _aZ0
_bSUPMU
596 _a1
999 _c8660
_d8660